Filosofía y tecnociencia: nuevas sinergias - PowerPoint PPT Presentation

filosof a y tecnociencia nuevas sinergias n.
Skip this Video
Loading SlideShow in 5 Seconds..
Filosofía y tecnociencia: nuevas sinergias PowerPoint Presentation
Download Presentation
Filosofía y tecnociencia: nuevas sinergias

play fullscreen
1 / 27
Download Presentation
Filosofía y tecnociencia: nuevas sinergias
Download Presentation

Filosofía y tecnociencia: nuevas sinergias

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Filosofía y tecnociencia: nuevas sinergias Alfredo Marcos Universidad de Valladolid

  2. Experimento de interdisciplinariedad • ¿Qué puede aportar la FC a la investigación tecnocientífica? • ¿Qué filosofía de la FC? • Filosofía de la tecnociencia, filosofía para la tecnociencia • Neopositivismo → Receivedview→ Popper → Kuhn → filosofía de la ciencia post-kuhniana(Latour, Woolgar…)

  3. La ciencia como lenguaje • La filosofía de la ciencia trata sobre problemas lógico-lingüísticos • Racionalidad = coherencia lógica • Realismo reducido al problema semántico de la referencia de los términos (teóricos y observacionales) • La ciencia como acción humana individual y social • La filosofía de la ciencia como filosofía de la acción científica • Ética, política, aspectos sociales y ambientales, creatividad, aplicación, enseñanza, comunicación… de la tecnociencia • Racionalidad práctica

  4. ¿Qué puede aportar la FC a la investigación tecnocientífica? • Reflexión sobre aspectos metodológicos (creatividad, relevancia, manejo de la base empírica, aspectos lógicos…) • Clarificación conceptual: información, sistema, modelo… • Clarificación del “estatuto epistemológico”: “Sistemas de información como sistemas técnicos con consecuencias sociales […] a sistemas sociales técnicamente implementados“ (Hirschheim, Klein & Lyytinen, Information Systems Development and Data Modelling. Conceptual and Philosophical Foundations, CUP,1995). • Reflexión sobre aspectos “prácticos” (impacto social, ambiental, aspectos políticos…) • Visión de conjunto, visión generalista, integración… • …

  5. Reflexión metodológica • La ciencia como acción personal: toda la persona y sus circunstancias • ¿Una cuestión personal?, ¿y la objetividad? • La objetividad y utilidad de la ciencia dependerán de la dosificación y el ritmo (pulso, respiración) • La guía del sentido común

  6. Fases de la acción científica • (i) Identificación y planteamiento de un problema • (ii) Formulación de hipótesis y elección entre las mismas • (iii) Identificación de los supuestos auxiliares y extracción de consecuencias empíricas • (iv) Observación y experimentación • (v.i) Verificación empírica provisional • (v.i.i) Explicación y predicción • (v.i.ii) Transferencia y aplicación • (v.i.iii) Comunicación y enseñanza • (v.i.iv) Detección o construcción y planteamiento de nuevos problemas (i) • (v.ii)Falsación empírica provisional • (v.ii.i) Replanteamiento del problema, de la hipótesis o de los supuestos auxiliares (i)

  7. (i) Identificación y planteamiento de problemas • Heródoto (484-425 a.C.) y el Nilo

  8. (ii) Formulación y elección de hipótesis • J. Kepler (1571-1630), T. Brahe (1546-1601) y la órbita de Marte

  9. (iii) Supuestos auxiliares y consecuencias empíricas • Georg Ernst Stahl (1660-1734) y el flogisto • (HA)O

  10. (iv) Observación y experimentación • Galileo (1564-1642), Th. Harriot (1560-1621) y la Luna

  11. (v) Verificación y falsación • G. Mendel (1822-1884) y los guisantes • Galileo, el grano de arena y la piedra de molino • Verificación: (HA)O O • Falsación: (HA)O O (HA) HA • Copérnico (1473-1543) y Stahl ante la falsación

  12. Explicación, aplicación y mucho más • Teorías contemporáneas del cáncer: SMT y TOFT

  13. Conclusión • No es la tecnociencia una actividad modular, que se pueda reducir solo a la capacidad de observación y de inferencia lógica de un individuo, sino una actividad personal integral • La racionalidad científica es una suerte de armonía o de equilibrio, fruto de la dosificación y ritmo con que se conjugan todas las capacidades y circunstancias • Conforme a la metáfora del pulso cardiaco, la persona que hace ciencia toma, según los momentos, una mayor o menor dosis de cada una de sus capacidades • Conforme a la metáfora de la respiración, esta persona incluye también en su hacer científico una mayor o menor dosis de circunstancias sociales o históricas de su entorno • La dosificación y el ritmo corren a cargo del sentido común de la persona, de su sensatez o prudencia

  14. Some ideas on the concept of information

  15. 1. Introduction • Information is seen today as a family of concepts with no clear interconnection • A unified theory of information should include both, a concept and a measure • The concept should be clearly connected with the rest of the current concepts of information • The measure should fulfil two requirements: • It should capture the ordinary meaning of information • It should be clearly linked with Shannon’s measure

  16. “Bioinformation as a triadic relation”, en R. Arp and G. Terzis (eds.), Information and Living Systems, M.I.T. Press, Massachusetts, 2011. • “Information in the Biological Science”, en K. Kampourakis (ed.), The Philosophy of Biology. A CompanionforEducators, Springer, Dordrecht, 2013, pp. 511-548.

  17. 2. Background • The term “information” now occupies a central place in everyday speech and in almost all sciences and disciplines • The most important reference for the theory of information is the classical book by Claude E. Shannon and Warren Weaver (1949) • They note three types of problems concerning information (they deal only with the first one): • Syntactic (= Floridi’s information as reality?) • Semantic (= information about reality?) • and pragmatic problems (= inf. for reality?)

  18. 2. Background • In order to deal with these problems, some authors have viewed: • Information as a thing (ontological economy problem) • Information as a property (syntactic; location problem) • Or information as a relationship • As a diadic relationship (semantic) • Or as a triadic relationship (pragmatic)

  19. 3. Information as a triadic relationship • I shall argue that information should be conceived of as a triadic relationship • “All dynamical action, physical or psychical, is a resultant of actions between pairs. But by semiosis I mean, on the contrary, an action which involves three subjects, sign, its object and its interpretant, in any way resolvable into actions between pairs” (adapted from Peirce, CP, 5: 484) • Information implies a relationship between: • i) a message, m • ii) a system of reference, S, which the message informs the receiver about • and iii) a receiver, R. The receiver is a formal scheme resident in a concrete subject

  20. 3. Information as a triadic relationship • A concrete subject could use more than one receiver (alternately or successively) • Some elements entering into one informational relationship could participate in another by playing a different role (enchained informational relations; flow of information) • There is often no specific emitter in non-linguistic contexts, so a general theory of information should not demand the presence of an emitter • It is possible to construe a channel in an abstract way: as a correlation between two domain • A message informs on a system, that is, on its possible states, not only on one of them

  21. 3. Information as a triadic relationship • Most of the conceptual problems concerning information stem from ellipsis of some of the basic elements, even the opinion that there are many different unrelated concepts of information • Factors conditioning information are often mistaken for information itself (structure, correlation…) • The relationship among m, R, and S is informative when it changes the receiver’s knowledge of the system of reference • Knowledge should be understood in a very general way: • Can only animals know? Why not plants? not only animals and men have expectations and therefore (unconscious) knowledge, but also plants; and, indeed, all organisms. (Popper, 1990: 9)

  22. 4.Measuring Information as a Tradic Relation • Information can be measured from the magnitude of its effects, that is, by the changes to the receiver’s knowledge of the system of reference

  23. Information measure in the function of a binary logarithm of D

  24. 4. Measuring Information as a Relation • D=0 means that there is no change in R’s knowledge of S despite his receiving the message. I, logically equals zero • D=2 only happens if the message informs of something happening that R previously considered impossible. I, has no real value, a situation where a radical restructuring of the subject’s expectations is seen to be required • All learning processes (biological and cultural evolution, Piagetian development of cognitive structures, Kuhnian dynamics of scientific theories, etc.) seem to involve two kinds of change: (1) accumulative or gradual (assumed within the limits of a given receiver and rendering a positive amount of information); and (2) reorganizational or saltational (when our measure yields no real value, indicating that a radical change—a change to a new receiver—is required) • In the other cases I approaches  if D approaches 2. This means that the greater number of possible states of the system and the greater the disagreement with R’s previous knowledge (without reaching D=2), then the greater the amount of information

  25. 5. Conclusion • Such results are obviously coherent with our intuitive notion of information • On the other hand, under certain restricted conditions, our formulæ can be demonstrated to yield the same outcomes as the standard Shannonian ones (see Marcos, 2011). • On my account, information should be conceived of as a triadic relationship. Pragmatic or functional information is envisioned as the basic and more general concept of information, while the others could be derived

  26. “Estatuto epistemológico”