150 likes | 268 Views
This chapter delves into the biological properties of blood critical for forensic identification. It covers normal blood volume, the significance of plasma and serum, and the cellular components like red and white blood cells. Two main types of assays are detailed: presumptive assays, notable for their sensitivity and speed, and confirmatory assays, which provide specificity. Various tests, including colorimetric and chemiluminescent assays, are discussed, highlighting their mechanisms, applications, and potential for false positives. Understanding these methods is vital for accurate forensic analysis.
E N D
Chapter 6: Identification of Blood Forensic Biologyby Richard Li
Biological Properties of Blood • Normal blood volume is 8% of body weight • = 5-8 pints for average adults • Fatal if lose 40% or more of blood volume • Two portions: • Fluid portion • Plasma- fluid portion of blood that can clot • Serum- remaining fluid after clot is removed • Cellular Portion • Red blood cells (erythrocytes; hemoglobin; No DNA) • White blood cells (Leucocytes; fight infection; DNA present) • Platelets (Thrombocytes; blood clotting; No DNA)
Hemoglobin: Transports oxygen from lungs to body tissues; helps with transport of CO2 out of the tissues and back to the lungs Heme: Prosthetic group in hemoglobin; Binds oxygen; also has peroxidase activity
Two Types of Assays • Presumptive • Very sensitive, fast, and easy to perform • Depend on oxidation-reduction reaction catalyzed by heme group of blood • Result in color change or release of photon by chemiluminescence or fluorescence • Confirmatory • Need a lab to perform; greater specificity • Depend on crystal formation, primary serological reactions, spectrophotometry, or RNA-based assays
Presumptive Assays • Detect traces of blood • Oxidation-reduction reaction catalyzed by heme • Oxidation- lose electron • Hydrogen peroxide used as an oxidant • E.g. K-M test described in Lecture 5 • Reduction- gain electron • Tests result in: • Change of color (colorimetric assays) • Release of photons • Chemiluminescence or fluorescence
Presumptive Assays • Colorimetric Assays • Phenolphthalein (Kastle-Meyer) • -Introduced in Lecture 5 • We will perform this test in lab • Leucomalachite green (LMG) • Colorless in reduced state; green when oxidized • Benzadine and Derivatives • Benzadine colorless in reduced state; dark blue when oxidized • Tetramethylbenzidine (TMB) colorless in reduced state; blue-green when oxidized
Presumptive Assays • Chemiluminescent assays • Light is emitted as a product of the chemical reaction • Luminol- emits light blue color • Useful when blood has been cleaned up • Performed in darkness • Can detect small traces of blood • Can detect patterns • May dilute sample
Presumptive Assays • False positive results with luminol: • Bleach • Plants • Copper and copper-containing alloys • Feces • Urine (if blood is present, including menstrual blood)
Presumptive Assays • Fluorescence assays • Absorption of UV or visible radiation kicks electrons up to a higher orbitial (higher energy state) • When electrons drop down to original ground state: • Energy released is transferred to vibrational and rotational energy of molecular bonds (most common) • Energy released as a photon of lower energy wavelength (less common) = fluorescence
Presumptive Assays • Fluorescin • When oxidized by the peroxidase activity of heme in the presence of hydrogen peroxide, will fluoresce • Must be exposed to wavelength 425-485 nm (blue-purple) from an ALS • Emits yellowish-green color (longer wavelength) Emits (fluoresces) light here Absorbs light here
Confirmatory Assays • Microcrystal assays • Hemochromagen crystal assay (Takayama) • Hematin crystal assay (Teichmann) • Method: • Small amount of putative blood added to a slide • Chemical solution added • Slide heated to form crystals (if blood present) • Crystals viewed under the microscope
Confirmatory Assays • Other • Chromatographic and electrophoretic methods • Identify human hemoglobin based on mobility on columns or in gels • Spectrophotometric methods • Identify human hemoglobin based on light spectra absorbed by hemoglobin and its derivatives • Immunological methods • Anti-human hemoglobin antibodies (see Lecture 5) • RNA-based methods • Assay for presence of mRNAs found only in human blood