1 / 25

Cooperative Collision Warning Using Dedicated Short Range Wireless Communications

Cooperative Collision Warning Using Dedicated Short Range Wireless Communications. 指導教授:郭文興 老師 學生:楊舒智. 目 錄. ABSTRACT & INTRODUCTION DEDICATED SHORT RANGE COMMUNICATIONS (DSRC) LARGE­SCALE VANET SIMULATION 3.1 Freeway Mobility Scenarios 3.2 Forward Collision Warning (FCW)

ipo
Download Presentation

Cooperative Collision Warning Using Dedicated Short Range Wireless Communications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cooperative Collision Warning Using Dedicated ShortRange Wireless Communications 指導教授:郭文興 老師 學生:楊舒智

  2. 目 錄 • ABSTRACT & INTRODUCTION • DEDICATED SHORT RANGE COMMUNICATIONS (DSRC) • LARGE­SCALE VANET SIMULATION 3.1 Freeway Mobility Scenarios 3.2 Forward Collision Warning (FCW) 3.3 DSRC Vehicular Network • COMMUNICATIONS PERFORMANCE OF FORWARD COLLISION WARNING 4.1 Performance Metrics 4.2 Simulation Results 4.2.1 High Vehicle Density 4.2.2 Low Vehicle Density

  3. 目 錄 • DISTANCE TRENDS AND BROADCAST ENHANCEMENTS 5.1 Packet Success Probability Trends with Distance 5.2 Broadcast Enhancements 5.2.1 Application Broadcast Rate Adaptation 5.2.2 Transmission Range Adaptation • CONCLUSIONS

  4. ABSTRACT • Forward Collision Warning (FCW)應用在Dedicated Short Range Wireless Communications (DSRC)上的延遲和成功率。 • 探討距離和可能的途徑對於傳輸訊息性能的影響。

  5. INTRODUCTION • WLAN系統(例如DSRC系統),被研究來當作車輛之間的通訊平台,以避免事故發生。 • CCW的應用例子: • Forward Collision Warning (FCW) • Lane Change Assistance (LCA) • Electronic Emergency Brake Light (EEBL)

  6. 2. DEDICATED SHORT RANGE COMMUNICATIONS (DSRC) • DSRC類似於IEEE 802.11a ,不過還是有一些主要的差別: • Operating Frequency Band • Application Environment • MAC Layer • Physical Layer

  7. 3. LARGE­SCALE VANET SIMULATION 3.1 Freeway Mobility Scenarios Host Vehicle (HV) 代表自己本身的這台車。 Forward Vehicle (FV) HV正前方的那台車。 Adjacent Vehicle (AV) HV和FV左右兩個車道的相鄰車輛。

  8. 3. LARGE­SCALE VANET SIMULATION 3.2 Forward Collision Warning (FCW) • FCW運作的時候,每輛車週期性的播送短訊息給附近傳送範圍內的全部車輛,短訊息裡面包含有關它目前的狀態(例如位置、速度、控制設定等等)。 • 對FCW來說,它關心的車輛是最靠近它的前方車輛。 圖1也說明了其他兩個應用模型: • Lane Change Assistance (LCA):在這個模型中HV只對相鄰車輛Adjacent Vehicle (AV)的訊息感興趣。 • Electronic Emergency Brake Light (EEBL):在這個模型中HV對前方的前方車輛Next Forward Vehicle (NFV)感興趣。

  9. 3. LARGE­SCALE VANET SIMULATION 3.3 DSRC Vehicular Networks • 這篇paper焦點集中在DSRC的單波段運作(安全方面的應用)。採用BER-SNR ( bit-error rate 和 signal-to-noise )合併測量出的曲線和pathloss來模擬。模擬的時間固定為30秒,290個封包以每秒10個封包的速度在車輛之間傳送。

  10. 4. COMMUNICATIONS PERFORMANCEOF FORWARD COLLISION WARNING • 這個部份是把CCW的性能做量化,來判斷的性能的好壞。 • 4.1 Performance Metrics ( 性能的計量方法 ) • 4.2 Simulation Results ( 模擬結果 )

  11. 4.1 Performance Metrics • 新的度量方法: • Packet inter-reception time (IRT) at the HV for packets sent by a given transmitter: IRT的定義為HV從特定的發送者(FV, NFV, or AV)連續成功的接收兩個傳送過來的封包所花的時間。 • Cumulative number of packet receptions at the HV from a given transmitter: 它定義為HV從發送者(FV, NFV, AV)那邊成功接收的累計封包數量。

  12. 4.1 Performance Metrics • 傳統的度量方法 : • Packet success probability (PSP) at the HV from a given transmitter: 這個度量標準類似於封包的傳送率,它定義為HV從特定發送者那邊成功接收到封包的百分比。 • Per-packet latency at the HV for packets sent by a given transmitter: 它定義為發送者產生封包並且HV成功接收封包的期間所花的時間。

  13. 4.2 Simulation Results - 4.2.1 High Vehicle Density Figure 2: FCW Performance under High Vehicle Density (a) Cumulative number of packet receptions at Host Vehicle from Forward Vehicle

  14. 4.2 Simulation Results - 4.2.1 High Vehicle Density (b) Packet inter-reception time (IRT) at Host Vehicle for packets sent by Forward Vehicle

  15. 4.2 Simulation Results - 4.2.1 High Vehicle Density (c) Per-Packet latency at Host Vehicle for packets sent by Forward Vehicle

  16. 4.2 Simulation Results - 4.2.2 Low Vehicle Density

  17. 4.2 Simulation Results - 4.2.2 Low Vehicle Density

  18. 4.2 Simulation Results - 4.2.2 Low Vehicle Density

  19. 5. DISTANCE TRENDS AND BROADCAST ENHANCEMENTS • 這個部份探討關於安全應用和DSRC的性能趨勢。 • 模擬的結果包含了: • 距離對於封包傳送的成功率有什麼影響。 • 與最佳化傳播率相關的利害關係(trade-off)。 • 傳輸範圍改變對性能的影響。

  20. 5.1 Packet Success Probability Trends with Distance • Figure 4: Packet Success Probability variation with distance from the receiver (Host Vehicle) under high and low vehicle densities

  21. 5.2 Broadcast Enhancements • DSRC傳輸能力的提升可以透過更改OSI其他層裡面一些可以更動的參數來達成。 • 在這個部份中,我們用兩個其他的參數來探討它的利弊,分別是封包傳輸率(應用層參數)和傳輸範圍(無線電波參數)。

  22. 5.2.1 Application Broadcast Rate Adaptation

  23. 5.2.1 Application Broadcast Rate Adaptation

  24. 5.2.2 Transmission Range Adaptation

  25. 6. CONCLUSIONS • 這篇paper裡面,對於DSRC來做合作碰撞警告的性能評估做了研究。 • 在兩種不同的密度之下,FCW的性能有不同的結果。 • 探討可能提升傳播的技術,就是指傳輸率和適應傳送範圍。 • 這個研究可以延伸到調查基於測量的無線波段模型的影響,也可以延伸到發展分散式的傳播,以取得最佳的傳播比率和輸送範圍的提升技術。

More Related