slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
ROYAL Jordanian Crew Training Department PowerPoint Presentation
Download Presentation
ROYAL Jordanian Crew Training Department

Loading in 2 Seconds...

play fullscreen
1 / 73

ROYAL Jordanian Crew Training Department - PowerPoint PPT Presentation


  • 317 Views
  • Uploaded on

ROYAL Jordanian Crew Training Department. RNAV/ RNP /GPS APPROACHES. Reference Material A320 /A330/A340 Flight Crew Operating Manual PRO-NOR-SOP-19 P 1/20 LIM-22-10 P ¾ OEB – Incorrect Vertical Profile during NPA, A320 OEB 31

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ROYAL Jordanian Crew Training Department' - inari


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

ROYAL JordanianCrew Training Department

  • RNAV/ RNP /GPS APPROACHES

Royal Jordanian Crew Training Department

slide2

Reference Material

  • A320 /A330/A340 Flight Crew Operating Manual
      • PRO-NOR-SOP-19 P 1/20
      • LIM-22-10 P ¾
      • OEB – Incorrect Vertical Profile during NPA, A320 OEB 31
      • Flight Crew Bulletins “Use Of Managed Guidance in Approach and Nav Data Base validation”
  • Airbus Getting to Grips with Modern Navigation
  • FCTM
  • ICAO PBN Doc 9613
  • Airbus CBT on Final Approach Mode

Royal Jordanian Crew Training Department

rnav rnp gps approach
RNAV RNP GPS Approach
  • Introduction
    • RNAV
    • B-RNAV
    • P-RNAV
    • RNP
  • RNAV Approach introduction
  • Preflight
    • RAIM Availability Check using RAIM Holes Chart
    • RAIM Availability Check Using PREDICTIVE GPS
    • Temperature check
    • Flight Path Angle/Rate of descent check
  • Flight Crew Procedure
    • ECP Mode
    • Database Validation
    • PROCEDURE TURNS
    • RNP GPS Approach

Royal Jordanian Crew Training Department

rnav rnp gps approach1
RNAV RNP GPS Approach
  • Contingencies
    • GPS PRIMARY Flow Chart
    • LOSS OF BOTH GPS Flow Chart
    • ACCURACY LOW Flow Chart
    • FM/GPS POSITION disagree Flow Chart
    • One GPS Failing Flow Chart
    • SINGLE ENGINE Flow Chart
    • Loss of dual mode Flow Chart
    • CONTINGENCY MATRIX
  • FMS Legs
    • The Transitions
    • The FLY-BY
    • The Fly-Over
    • The By-Pass
    • Leg Type
    • TF Leg
    • CF Leg
    • PI Leg
  • NANUs
  • Pilot / Dispatch guide

Royal Jordanian Crew Training Department

rnav rnp gps approach rnav
RNAV RNP GPS Approach RNAV

Introduction

Definition (ICAO)Area Navigation, RNAV, is a method of navigation which permits aircraft operation on any desired flight path within the coverage of the station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

RNAV requires a Flight Navigation Computer capable of the following:

  • To Receive signals from navigational sensor(s)
    • VOR/DME.
    • DME/DME
    • INS or IRS
    • GPS
  • To Compute aircraft position
  • To Determine track to next waypoint
  • To Continuously update the situation

Royal Jordanian Crew Training Department

rnav rnp gps approach b rnav
RNAV RNP GPS Approach B-RNAV

B-RNAV (Basic RNAV) permits aircraft to navigate at FL95 and above without the use of point source navigation aids. It requires aircraft conformance to a track-keeping accuracy of ± 5NM for at least 95% of flight time (RNP 5) This value includes signal error, airborne receiver error, display system error, and flight technical error.

This navigation performance assumes the necessary coverage provided by satellite or ground based navigation aids is available for the intended route to be flown.

In the event of a GPS failure, the aircraft retains the capability to navigate relative to ground based navigation aids (e.g., VOR, DME, and NDB).

B-RNAV was implemented on 23 April 1998, B-RNAV became mandatory as the primary means of navigation in all ECAC en-route airspace; VOR/DME remained available for reversionary navigation and for use on some Domestic ATS routes in the lower airspace

In addition to the functions required for RNAV, B-RNAV Flight Computer must have the following functions:

  • Continuous indication of aircraft position relative to track to be displayed to the pilot flying on a navigation display situated in his primary field of view, and, information to verify aircraft position must be displayed in the non-flying pilot's primary field of view.
  • Display of distance and bearing to the active (To) waypoint;
  • Display of ground speed or time to the active (To) waypoint;
  • Storage of waypoints; minimum of 4; and
  • Appropriate failure indication of the RNAV system, including the sensors.

Royal Jordanian Crew Training Department

rnav rnp gps approach p rnav
RNAV RNP GPS Approach P-RNAV

B-RNAV applies to all IFR flights operating in conformity with the ICAO procedures. In some cases B-RNAV has also been implemented on certain SIDs and STARs provided that:

  • The B-RNAV portion of the route is above Minimum Sector Altitude/Minimum Flight Altitude/Minimum Radar Vectoring Altitude (as appropriate), has been developed in accordance with established PANS-OPS criteria for en-route operations and conforms to B-RNAV en-route design principles.
  • The initial portion of departure procedures is non-RNAV up to a conventional fix beyond which the B-RNAV procedure is provided in accordance with the criteria given above.
  • The B-RNAV portion of an arrival route terminates at a conventional fix in accordance with the criteria given above and the arrival is completed by an alternative final approach procedure, also appropriately approved.

The specific procedures for B-RNAV operations are incorporated in ICAO Doc 7030/4 Ed. 1997

P-RNAV, Precision Area Navigation, is a further development of Basic Area Navigation (B-RNAV). It is being implemented in Terminal airspace as an interim step to obtain the increased operating capability and environmental benefits arising from route flexibility. The lateral track keeping accuracy of the on-board P-RANV system shall be equal to or better than +/- 1 NM for 95% of the flight time.

P-RNAV procedures applies to operations including departures, arrivals, and approaches up to the point of the Final Approach Waypoint (FAWP).

Royal Jordanian Crew Training Department

rnav rnp gps approach rnp
RNAV /RNP /GPS Approach RNP

RNP as defined in ICAO doc 9613 :

  • A statement of the navigation performance accuracy necessary for operation within a defined airspace.

RNP as defined in ICAO doc 9650 :

  • A statement of the navigation performance accuracy, integrity, continuity and availability necessary for operation within a defined airspace.

RNP from an airborne point of view is defined by the RNP-(x)-RNAV concept described in document ED 75() or DO 236(). These system fully support definition of ICAO doc 9650 (accuracy, integrity and continuity).

RNP-(x)-RNAV airborne system:

RNP Accuracy is defined as the total system error (x) 95% of the flying time. (x) is the RNP value.

  • Containment integrity: Probability that the total system error exceeds the specified containment limit without annunciation.
    • Shall be less than 10-5 per flight hour (99.999%). Containment limit is twice the RNP value (x).
    • Containment continuity : Probability of annunciated loss of RNP RNAV capability shall be less than 10-4 per flight hour (99.99%).

Royal Jordanian Crew Training Department

rnav rnp gps approach rnp1
RNAV RNP GPS Approach RNP

.

99.999%

2 x RNP

Integrity

95%

1 x RNP

Accuracy

Desired route

Accuracy

Integrity

95%

1 x RNP

2 x RNP

99.999%

Royal Jordanian Crew Training Department

rnav rnp gps approach introduction
RNAV RNP GPS Approach Introduction

RNAV Approach introduction

NPAs known as dive and drive approaches, contributed a great deal to CFITs, which pushed the regulators and the industry to find a solution.

The solution was to merge Lateral RNP with Vertical Capabilities; known as Baro VNAV, into one concept, where the aircraft would be guided Laterally using its natural RNP Lateral Guidance mode, and Vertically on a “Virtual Glide Slope” referenced as VPA Vertical Path Angle, known in the flight deck as the Flight Path Angle, the FPA.

The First NPA where simply an Overlay of existing procedures, such as VOR, NDB, etc. Flown by the FMS using ARINC 424 legs, at a later stage when legislators, airframers, and operators gained experience, and confidence, the industry pushed for the usage of GPS technology, which would enable to fly a procedure without any ground station.

Classified as RNAV RNP and RNAV GPS, these procedures have their own design criteria, but present a better level of safety than conventional NPAs., due to the fact that the Azimuth is always aligned with the runway, not subject to scalloping, bending and or interference, with a FPA for the vertical guidance.

Royal Jordanian Crew Training Department

rnav rnp gps approach introduction1
RNAV RNP GPS Approach Introduction

RNAV Approach introduction

However, Barometric altimeters are calibrated to indicate true altitude only under International Standard Atmosphere (ISA) conditions of temperature and sea level pressure.  In cases where the temperature is higher than ISA, the true altitude will be higher than the altitude indicated by the altimeter. Conversely, when the temperature is lower than ISA, the true altitude will be lower than indicated.

Consequently the vertical paths would only be at the published procedure altitudes when ISA conditions exist.  In below ISA conditions, the constant angle vertical path would be at a shallower angle than for ISA conditions.  Likewise the vertical profile defined by the waypoint altitudes would also be lower.  In such cases expected terrain and obstacle clearance during approaches would not be maintained if the aircraft were flown at minimum IFR altitudes, nor would pilots be made aware of this condition. Clearly there is a safety consideration to be addressed for FMS baro VNAV terrain and obstacle clearance margin.

One solution was to introduce a temperature compensation within the FMS functions, and the other is to limit the VNAV Baro to a published temperature beyond which the vertical portion of the procedure SHALL NOT be FLOWN.

Royal Jordanian Crew Training Department

rnav rnp gps approach2
RNAV RNP GPS Approach

General

The A320/A330/A340 Family FMGS is designed to use the following two Non-Precision Approach strategies:

  • Approach NAV Strategy for RNAV RNP, RNAV GPS
  • Approach NAV Strategy for VOR, VOR/DME. NDB, NDB/DME, LOCATOR, LOCATOR DME.

Both strategies have the following features in common:

  • Each specific approach is contained in the FMS database.
  • Each approach is flown using the TRACK / FPA mode on final.
  • Each approach is flown using a constant angle descent from the FAF to The MDA.

The FMS database provides the course and Flight Path Angle/glide path guidance in an ARINC 424 format, please note that the FMS is not using any ground signal for tracking.

Royal Jordanian Crew Training Department

rnav rnp approach
RNAV RNP Approach

RNAV Approach can be performed in FINAL APP mode provided that:

  • The FMS is in DUAL MODE
  • The GPS in PRIMARY or ACCURACY is HIGH
  • The Approach is stored in the navigation database.
  • The Final Approach (FAF to runway or MAP) as extracted from the database and inserted in the primary F-PLN including altitude constraints, is not revised (modified) by the crew
  • Before starting the Approach, the crew must check the lateral flight plan against the published approach chart using the MCDU and ND (In PLAN mode)
  • The approach trajectory is laterally and vertically intercepted, before the FAF, or equivalent waypoint in the FM F-PLN, so that the aircraft is correctly established on the final approach course before starting the descent.
  • The final approach is laterally and vertically monitored, using the VDEV and appropriate raw data (distance to the runway, altitude, FPV)

Royal Jordanian Crew Training Department

rnav rnp approach raim holes chart
RNAV RNP Approach RAIM Holes Chart

Preflight:

RNAV Approach with GPS PRIMARY:

Unless an instrument approach procedure not requiring GPS PRIMARY, is available at the destination or destination alternate (and at required takeoff alternate, and enroute alternate) the GPS PRIMARY availability must be verified before the flight.

GPS PRIMARY availability is reflected on RAIM availability. RAIM availability must be checked using RAIM holes charts provided in the PREDICTIVE GPS MCDU Page

GPS PRIMARY availability using RAIM HOLES Chart:

Our A/Cs are Baro Aided, which means that the system is using the aircraft altitude in order to determine the distance from earth, which is used as a sixths satellite.

On the chart above, we can see that in our case RAIM is Available, therefore GPS can be used as the PRIMARY mean of navigation

Royal Jordanian Crew Training Department

rnav rnp approach predictive gps raim
RNAV RNP Approach PREDICTIVE GPS RAIM

GPS PRIMARY availability using PREDICTIVE GPS MCDU Page :

Receiver Autonomous Integrity Monitoring RAIM, is a software hosted by the GPS receiver,

  • RAIM is capable of detecting and excluding a faulty satellite from the solution, enabling the receiver to reliably calculate position and altitude.
  • RAIM computes a pseudo theoretical position and compares it with the GPS position, if there is a difference then RAIM re-computes another pseudo, excluding the satellites one by one until the pseudo position is equal to the GPS position.

RAIM Availability Check:

Using the PREDICTIVE GPS page accessed from the PROG page, the crew shall deselect the Faulty or off the Air GPS as per NOTAM /NANUs using the PRN (PRN - Pseudo Random Noise), THEN populate the page using Destination ICAO code along with the ETA

Ymeans RAIM is available

Nmeans RAIM is NOT available

RAIM must be available (Y)

in order to have GPS confidence level as PRIMARY

at the time the NPA is going to be flown, if it not the

case then

WE CANNOT PLAN FOR AN APPROACH USING GPS as PRIMARY SENSORS.

return

Select PROG PAGE

The prediction status is given for a period of

15 minutes before the ETA , until 15 minutes after

in 5 minute steps

Select PREDICTIVE GPS

Scratchpad the PRN

Scratchpad the Destination ETA

Enter It

Enter the ETA

Royal Jordanian Crew Training Department

rnav rnp approach temperature effect
RNAV RNP Approach Temperature Effect

One of the major disadvantages of the Baro VNAV functionality is that the system that derives the vertical path angle on an approach does not accommodate the effects of altimeter source temperatures on the vertical path.

FMS (REV2+) installed on our fleets have a barometric VNAV approach capability, but do not include a temperature compensation function; therefore a temperature limitation shall be reflected on the Approach chart.

Temperature Check:

If such temperature limitation is not provided on the Approach plate then, use the Delta ISA at destination, derived from the Forecasted Temperature at destination.

Delta ISA -24º C is the Maximum allowed temperature deviation.

The table below illustrates the temperature effect on the VPA.

Trans Level: FL 150 Trans alt: 13000'

2. Baro-VNAV not authorized below -17° C

return

If the field temperature is below the BARO-VNAV temperature, the LNAV minimums must be used (MDA + 50), with the procedure flown with VERTICAL SELECTED

Royal Jordanian Crew Training Department

rnav rnp approach fpa rod
RNAV RNP Approach FPA ROD

Flight Path Angle/Rate Of Descent Limitation:

Beyond a rate of descent of 1200 feet/minutes, the FMGS will not be able to maintain the vertical profile.

Furthermore, higher rate of descent would trigger GPWS warnings, and/or would present unstabilized approach criteria.

Such condition are rare however can be encountered, when one or a combination of the following exists:

  • The FPA is high
  • Strong tail wind during the approach
  • High delta ISA

Royal Jordanian Crew Training Department

rnav rnp approach ecp mode
RNAV RNP Approach ECP Mode

ND ECP Mode Selection

Situational awareness for the PF is improved if the ND is set to the ROSE NAV mode or the ARC mode

Use of the ROSE VOR mode on at least one ND is recommended for VOR course guidance MONITORING.

.

Royal Jordanian Crew Training Department

rnav rnp approach ecp mode1
RNAV RNP Approach ECP Mode

ARC MODE

Monitoring raw data may be difficult in the ARC mode because the bearing pointer is not always visible in the ARC mode.

Royal Jordanian Crew Training Department

rnav rnp approach database validation
RNAV RNP Approach Database Validation

Select the CSTR on the EFIS Control panel

Compare the MCDU F-PLN to the Jeppesen approach chart and verify that the database final approach course , altitudes, distances and approach angle are valid.

Please note that the course has to be within 2° and the FPA within0.2°

Royal Jordanian Crew Training Department

flying a procedure turn pi leg
Flying a Procedure Turn, PI Leg

Flying an Procedure Turn PI leg

Configure to FLAPS 1 and slow to ‘S’ speed overhead the approach fix outbound.

When turning inbound to the FAF, configure to FLAPS 2 and slow to ‘F’ Speed.

The aircraft must be in the final landing configuration and stabilized at VAPP by the FAF.

Royal Jordanian Crew Training Department

flying an rnav rnp gps
Flying an RNAV RNP GPS

Flying an RNAV RNP GPS Approach

Select the RNAV approach from the FMS database.

Compare the MCDU F-PLN to the Jeppesen approach chart and verify that the database final approach course , altitudes, distances and approach angle are valid

Check that the field temperature is not below the BARO-VNAV temperature displayed on the Jeppesen chart,

If the field temperature is below the BARO-VNAV temperature, the LNAV minimums must be used (MDA + 50), with the procedure flown with VERTICAL SELECTED.

Trans Level: FL 150 Trans alt: 13000'

2. Baro-VNAV not authorized below -17° C

Royal Jordanian Crew Training Department

flying an rnav rnp gps1
Flying an RNAV RNP GPS

Flying an RNAV RNP GPS Approach

If the field temperature is above the BARO-VNAV temperature, then enter the

LNAV/VNAV DA from the RNAV Approach chart into the MDA field of the MCDU PERF APPR page

GPS PRIMARYand DUAL FMS are required for RNAV RNP GPS approaches.

Configure to FLAPS 1 and slow to ‘S’ speed before reaching the initial approach fix.

Upon being “Cleared for the approach”, push the FCU APPR

Select TRK – FPA

Descend so as to arrive at the final approach fix altitude at or prior to the FAF while complying with all published step-down altitudes and ATC instructions

Royal Jordanian Crew Training Department

flying an rnav rnp gps2
Flying an RNAV RNP GPS

Flying an RNAV RNP GPS Approach

Approaching the FAF fully configured, verify that the proper ‘TO’ waypoint is displayed on the ND, with the blue descent arrow indicating that FINAL will engage when a descending leg of the vertical profile (brick ) is intercepted.

Cross check Altitude versus Distance to Runway Threshold using the Jeppesen Chart and the runway entered in the Progress Page

THE AUTOPILOT WILL DISCONNECT AUTOMATICALLY 50 FEET’ BELOW THE (DA)

Royal Jordanian Crew Training Department

rnav rnp approach gps primary flow chart
RNAV RNP Approach GPS PRIMARY Flow Chart

RNAV NPA APPROACHES

LOSS OF GPS PRIMARY

GPS PRIMARY LOST

GPS PRIMARY?

NO

NO

NO

RNAV GPS

NOT AUTHORIZED

RNAV RNP AUTHORIZED

IF DME coverage available to maintain ACCURACY HIGH DISPLAYED

Check POSITION PAGE for Sensors

RNAV NPA OVERLAY AUTHORIZED

IF DME coverage available to maintain ACCURACY HIGH DISPLAYED

Check POSITION PAGE for Sensors

DME/DME

DISPLAYED?

DME/DME

DISPLAYED?

NO

YES

NO

YES

PROGRESS PAGE DISPLAYING

ACCURACY HIGH

CONTINUE MANAGED/MANAGED

PROGRESS PAGE DISPLAYING

ACCURACY LOW

CONTINUE IF RAW DATA IS AVAILABLE AND HAVE CORRECT INDICATIONS

USE SELECTED/SELECTED

CONTINUE RAW DATA

SELECTED/SELECTED

DISCONTINUE the APPROACH

GO AROUND

PROGRESS PAGE DISPLAYING

ACCURACY HIGH

CONTINUE MANAGED/MANAGED

PROGRESS PAGE DISPLAYING

ACCURACY LOW

DISCONTINUE the APPROACH

If the FMS is on DME/DME Radio update, it means that the EPU of 0.3 can be achieved, this is reflected on the ACCURACY HIGH status, since the EPU remains smaller than the RNP.

If the FMS is on IRS/IRS it means that soon, the ACCURACY will drop to LOW since IRS drift will pollute the EPU to the point that EPU will exceed RNP value, therefore it is better to discontinue the approach at a stage where the precision is still acceptable and follow the Go-Around

Royal Jordanian Crew Training Department

rnav rnp approach loss of both gps
RNAV RNP Approach LOSS of Both GPS

GPS PRIMARY LOST

RNAV NPA APPROACHES

LOSS OF BOTH GPS

RNAV GPS

NOT AUTHORIZED

RNAV RNP AUTHORIZED

IF DME coverage available to maintain ACCURACY HIGH DISPLAYED

Check POSITION PAGE for Sensors

RNAV NPA OVERLAY AUTHORIZED

IF DME coverage available to maintain ACCURACY HIGH DISPLAYED

Check POSITION PAGE for Sensors

DME/DME

DISPLAYED?

DME/DME

DISPLAYED?

NO

YES

NO

YES

PROGRESS PAGE DISPLAYING

ACCURACY HIGH

CONTINUE MANAGED/MANAGED

PROGRESS PAGE DISPLAYING

ACCURACY LOW

CONTINUE IF RAW DATA IS AVAILABLE AND HAVE CORRECT INDICATIONS

USE SELECTED/SELECTED

CONTINUE RAW DATA

SELECTED/SELECTED

DISCONTINUE the APPROACH

GO AROUND

PROGRESS PAGE DISPLAYING

ACCURACY HIGH

CONTINUE MANAGED/MANAGED

PROGRESS PAGE DISPLAYING

ACCURACY LOW

DISCONTINUE the APPROACH

If the FMS is on DME/DME Radio update, it means that the EPU of 0.3 can be achieved, this is reflected on the ACCURACY HIGH status, since the EPU remains smaller than the RNP.

If the FMS is on IRS/IRS it means that soon, the ACCURACY will drop to LOW since IRS drift will pollute the EPU to the point that EPU will exceed RNP value, therefore it is better to discontinue the approach at a stage where the precision is still acceptable and follow the Go-Around

Royal Jordanian Crew Training Department

rnav rnp approach accuracy low
RNAV RNP Approach ACCURACY LOW

NAV ACCURACY DOWNGRADE

PROGRESS PAGE DISPLAYING

ACCURACY LOW

RNAV GPS NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV RNP NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV NPA OVERLAY AUTHORIZED

CONTINUE IF RAW DATA IS AVAILABLE AND HAVE CORRECT INDICATIONS

USE SELECTED/SELECTED

Royal Jordanian Crew Training Department

rnav rnp approach fm gps position disagree
RNAV RNP Approach FM/GPS POSITION disagree

FM/GPS POSITION DISAGREE

ON ECAM

RNAV GPS NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV RNP NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV NPA OVERLAY AUTHORIZED

CONTINUE IF RAW DATA IS AVAILABLE AND HAVE CORRECT INDICATIONS

USE SELECTED/SELECTED

Royal Jordanian Crew Training Department

rnav rnp approach one gps failing
RNAV RNP Approach One GPS Failing

One GPS Failing

during the Approach

RNAV GPS AUTHORIZED

Select AP on the remaining GPS side

RNAV RNP AUTHORIZED

Select AP on the remaining GPS side

RNAV NPA OVERLAY AUTHORIZED

Select AP on the remaining GPS side

Royal Jordanian Crew Training Department

rnav rnp approach single engine flow chart
RNAV RNP Approach SINGLE ENGINE Flow Chart

SINGLE ENGINE

RNAV GPS AUTHORIZED

RNAV RNP AUTHORIZED

RNAV NPA OVERLAY AUTHORIZED

Royal Jordanian Crew Training Department

rnav rnp approach loss of dual mode flow chart
RNAV RNP Approach LOSS of DUAL MODE Flow Chart

INDEPENDENT OPERATION

LOSS of DUAL MODE

RNAV GPS NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV RNP NOT AUTHORIZED

DISCONTINUE the APPROACH

RNAV NPA OVERLAY AUTHORIZED

CONTINUE IF RAW DATA IS AVAILABLE AND HAVE CORRECT INDICATIONS

USE SELECTED/SELECTED

RNAV GPS AUTHORIZED

RNAV RNP AUTHORIZED

RNAV NPA OVERLAY AUTHORIZED

Royal Jordanian Crew Training Department

rnav rnp approach contingencies matrix
RNAV RNP Approach CONTINGENCIES MATRIX

Royal Jordanian Crew Training Department

rnav rnp approach fms legs the transitions
RNAV RNP Approach FMS Legs /The Transitions

The FMS Basis Elements:

The transitions

In order to connect legs to one another, the FM generates computed flight paths known as transitions

They are generally made of three small segments, such as a straight line followed by one turn,

followed by a straight line,

Or a turn followed by a straight line, followed by a turn.

Royal Jordanian Crew Training Department

rnav rnp approach fms legs the fly by
RNAV RNP Approach FMS Legs THE FLY-BY

The FMS Basis Elements:

The transitions

There are three types of transitions, and they are known as FLY BY, FLY OVER, BY-PASS

The FLY-BY

The Fly-By is the most common transition, itis built in such a way that the aircraft will start turning at a

computed distance before the overhead, and roll out precisely aligned with the outbound track of the next leg

Royal Jordanian Crew Training Department

rnav rnp approach fms legs the fly over
RNAV RNP Approach FMS Legs The Fly-Over

The Fly-Over

The transition is built in such a way that the Aircraft will FLY OVER Δ the Fix (the waypoint) then join the next leg.

Normally used for the FAF, and the MAP, fly over can also be generated to protect noise sensitive areas.

The FM does have a function Δ enabling the crew to create a Fly Over, and/or to delete a Fly over, without affecting the constraints of the concerned waypoint.

Please note that even if the FLY OVER Δ IS NOT DISPLAYED on the FAF or MAP on the MCDU,

it is still coded as such and there is no need to modify the transition.

Royal Jordanian Crew Training Department

rnav rnp approach fms legs the by pass
RNAV RNP Approach FMS Legs The By-Pass

The By-Pass

If, due to the geometry of the waypoints, the FM cannot compute a transition, then it elaborates a

By-pass using predicted A/C performances data, and uses it as a transition.

The Bypass will be as close as possible to the Bypassed waypoints.

Please note that FAF and MAP cannot have a By-Pass transition.

Royal Jordanian Crew Training Department

rnav rnp approach fms legs pi leg
RNAV RNP Approach FMS Legs PI Leg

Procedure Turn

The PI leg has a lateral floating sector prior to intercepting the CF leading to the FAF,

furthermore, PI leg dimension is proportional to the aircraft speed, therefore it is important to configure correctly the aircraft, prior to and during the PI leg transition.

Royal Jordanian Crew Training Department

a320 a330 340 in flight procedures
A320/A330/340 IN-FLIGHT PROCEDURES
  • NAV-FPV(NAV-V/S) Modes
  • FINAL (LNAV/VNAV) APP Mode
  • Not include a PI-CF (PROC T)
  • APP stored in NAV database has been validated.
  • Before starting APP, requires 2 NAV systems (2FMGS & 2GPS)
  • During APP, only one GPS loss can be continued, use the other FMGC
  • During APP, GPS PRIMARY LOSS discontinue(only if you are shooting GNSS approach)
  • During APP, If MSG FMS1/2 POS DISAGREE discontinue
  • OAT considered
  • Task sharing, TERR P/B on

Royal Jordanian Crew Training Department

nav rnp approach fms tf leg
NAV RNP Approach FMS TF Leg

TF: Great Circle Track between two Fixes.

The label line is blank for TF legs resulting from pilot entry or DIR TO

Royal Jordanian Crew Training Department

rnav rnp approach fms legs cf leg
RNAV RNP Approach FMS Legs CF Leg

CF: Course to a FIX (magnetic variation sensitive)

CF legs are usually not used between the FAF and the MAP because of the magnetic variation sensitivity,

however, if they are used, the ND display should not show curved trajectories departing the FAF to the MAP.

Royal Jordanian Crew Training Department

rnav rnp approach nanus
RNAV RNP Approach NANUs

NANUs

SVN - Space Vehicle NAVSTAR, Space Vehicle Number (satellite launch reference number)

PRN - Pseudo Random Noise (Transmitting Satellite Reference within the GPS constellation)

http://www.navcen.uscg.gov/gps/nanu.htm

NOTICE ADVISORY TO NAVSTAR USERS (NANU) 2008084SUBJ: SVN35 (PRN05) UNUSABLE JDAY 218/2338 - UNTIL FURTHER NOTICE1. NANU TYPE: UNUSUFNNANU NUMBER: 2008084NANU DTG: 052349Z AUG 2008REFERENCE NANU: N/AREF NANU DTG: N/ASVN: 35PRN: 05START JDAY: 218START TIME ZULU: 2338START CALENDAR DATE: 05 AUG 2008STOP JDAY: UFNSTOP TIME ZULU: N/ASTOP CALENDAR DATE: N/A2. CONDITION: GPS SATELLITE SVN35 (PRN05) WILL BE UNUSABLE ON JDAY 218(05 AUG 2008) BEGINNING 2338 ZULU UNTIL FURTHER NOTICE.

NANUs are sent by automated E-Mails and are managed by the US coast Guards.

NANUs provide GPS constellation status information, along with the satellite designation; as PRN XX, along with the period during which that satellite will not be available.

The period is given in calendar days and in Day Month Year format, along with the time in UTC.

PRN05 is the satellite reference number to be deselected in the predictive

GPS page

Cause UNUSABLE

From day 218 at 2338 UTC

Until Further Notice

Day 218 corresponds to

05 AUG 2008

PRN05 will be UNUSABLE

From that day at 2338 UTC

Until Further Notice

Royal Jordanian Crew Training Department

pilot dispatch guide
Pilot / Dispatch Guide
  • Pre-flight planning
  • Prior to commencing the approach
  • During the approach
  • Missed approach

Royal Jordanian Crew Training Department

pre flight planning
Pre-flight planning
  • Check whether the current navigation database is valid.

Royal Jordanian Crew Training Department

pre flight planning1
Pre-flight planning
  • Ensure sufficient means are available to land at the destination or at an alternate aerodrome in case of loss of RNP APCH capability.
    • A non-RNP APCH procedures is available at the alternate, or
    • At least one non-RNP APCH procedures is available at destination.
  • Check the Aircraft log for any adverse snags effecting the required systems for operation:
    • If the missed approach procedure is based on RNAV :
        • 2 RNAV systems must be available or
        • A company contingency procedure must be established.
    • If the missed approach procedure is based on conventional means (VOR, NDB) the appropriate equipment must be serviceable.
  • Check NOTAMs :

- For those systems relying on RAIM, the availability of 15 min before ETA until 15 min after ETA should be verified.

Royal Jordanian Crew Training Department

pre flight planning2
Pre-flight planning
  • For AIRCRAFT relying on AAIM (Litton ADIRS) the RAIM availability checking is not required.
  • Note: Systems equipped with AAIM will still have the GPS PREDICTION prompt available on the PROG page, but no GPS predictions will be displayed.

Royal Jordanian Crew Training Department

prior to commencing the approach
Prior to commencing the approach
  • Ensure the RNP APCH procedure was retrieved in full from NAV database.

Royal Jordanian Crew Training Department

prior to commencing the approach1
Prior to commencing the approach
  • Verify the correctness of the loaded procedure:
    • The waypoint sequences
    • Reasonableness of the tracks and distances of the approach legs
    • The vertical path angle
    • Which waypoints are fly-by and which are fly-over
  • Verify Vertical Path angle

Compare tracks and distances

Royal Jordanian Crew Training Department

prior to commencing the approach2
Prior to commencing the approach
  • Ensure that GPS is used for position computation.
  • Check that “GPS PRIMARY” is displayed on both MCDU PROG PAGE

Royal Jordanian Crew Training Department

prior to commencing the approach3
Prior to commencing the approach
  • Apply any necessary cold temperature compensations to all published minimum altitudes. This includes :
    • the altitudes for the initial, intermediate and final approach segment(s);
    • the MDA or DA; and
    • subsequent missed approach altitudes.

Royal Jordanian Crew Training Department

slide59

DA of LNAV/VNAV approach

No height loss margin is required.

MDA of LNAV approach

For CANPA, a height loss margin should be added.

Royal Jordanian Crew Training Department

prior to commencing the approach4
Prior to commencing the approach
  • For APV BARO NAV, the final approach path is safeguarded against the effects of low temperature by the design of the procedure, therefore the cold temperature correction is not required.
  • If the final approach path is modified, FMC will continue to fly the VNAV path, which is the higher of GP angle and the modified altitudes.
  • For APV BARO NAV operations:
    • Confirm correct altimeter settings
    • Apply any necessary cold temperature compensations
    • APV BARO NAV procedures are not permitted when the aerodrome temperature is below promulgated minimum aerodrome temperature.
    • APV BARO NAV is a non-precision approach with DA, so a height loss margin must not be added.

Royal Jordanian Crew Training Department

prior to commencing the approach5
Prior to commencing the approach

Below this temperature, an LNAV procedure may still be used provided that the appropriate cold temperature altimeter correction is applied to all minimum promulgated altitudes.

  • APV BARO_NAV procedures are not permitted when the aerodrome temperature is below promulgated minimum aerodrome temperature.

APV BARO_NAV is not permitted if temperature is below -15°C

Royal Jordanian Crew Training Department

prior to commencing the approach6
Prior to commencing the approach
  • During radar vectoring, be aware of:
    • Manual entry of coordinates into RNAV system within a terminal area is not permitted.
    • “Direct to” clearance may be accepted to the intermediate fix (IF) provided that the resulting track change at the IF does not exceed 45°
  • During radar vectoring, be aware of:
      • Direct to FAF is not acceptable
      • The lateral and vertical path between the FAF and the MAPt must not be revised

Lateral and Vertical path must not be modified

Royal Jordanian Crew Training Department

during the procedure
During the Procedure
  • In order to keep TSE within ±0.30 NM, flight director and/or Auto pilot should be used during final approach segment.
  • Intercept final path no later than the FAF in order for the aircraft to be correctly established on the final approach course before starting descent.
  • Overshoots or undershoots should be limited to 1 times the navigation accuracy.

TSE is the difference between the desired flight path and the actual flight path of the aircraft.

Royal Jordanian Crew Training Department

during the procedure1
During the Procedure
  • No later than 2 Nm before FAF, select MCDU PROGRESS page and start monitoring :
    • For BARO_NAV operation, at or before FAF, check that the differences of the two altimeters are within 100 feet
    • ATC should be notified of any problems with the RNAV system that results in loss of the approach capability.
  • Ensure that EPE is within limit

Royal Jordanian Crew Training Department

during the procedure2
During the Procedure

< .15 L/R

  • Cross track error should be limited to ±½ the navigation accuracy associated with the procedure
  • In this case, it should be within 0.30/2 = 0.15 nm

Royal Jordanian Crew Training Department

missed approach
Missed approach
  • Missed approach must be performed :
    • If RNAV failure is annunciated (i.e. Both FMC failure)
    • In case of RAIM alert ( UNABLE RNP message display)
    • If Lateral FTE is excessive
  • XTK error is greater than half of RNP (0.3)

> .15 L/R

Royal Jordanian Crew Training Department

missed approach1
Missed approach

VTK error is greater than +100/-50 feet.

  • Missed approach must be performed :
    • If RNAV failure is annunciated (i.e. Both FMC failure)
    • In case of RAIM alert ( UNABLE RNP message display)
    • If Lateral FTE is excessive
    • For BARO-NAV, If Vertical FTE is excessive

For BARO_NAV

Deviation above and below the vertical path must not exceed +100/-50 feet.

  • FTE or Flight Technical Error is an error between actual track and navigated track.
  • FTE is zero when XTK and VTK error is zero.

Royal Jordanian Crew Training Department

missed approach2
Missed approach
  • Use of RNAV system during missed approach is acceptable provided that:
    • The RNAV system is operational
    • The whole procedure, including the missed approach, is loaded from NAV database
    • If a missed approach was initiated due to “UNABLE RNP”, RNAV can still be used because the RNP in a missed approach segment is much greater than in final approach segment

Royal Jordanian Crew Training Department

missed approach3
Missed approach

Royal Jordanian Crew Training Department

conclusion
Conclusion
  • RNP = RNAV + onboard performance monitoring and alerting system
  • RNP Approach types:
    • GPS NPA or LNAV approach
    • APV_BARO_NAV or LNAV/VNAV approach
    • APV SBAS or LPV approach
  • RAIM = A function using the 5th satellite to give pilots a warning when GPS data should not be used for navigation.
  • AAIM = A function using other navigation sensors (i.e. IRS, DME/DME) as an integrity check on GPS data

Royal Jordanian Crew Training Department

conclusion1
Conclusion
  • Preflight
    • Check aircraft log book and NOTAMs for any effects to RNAV system.
    • Check current NAV database.
  • Prior to commencing the approach
    • Retrieve RNP procedures in full from NAV database.
    • Compare FMC and charts.
    • Correct for cold temperature if necessary
    • Do not modify the final segment.
  • During the Procedure
    • FD or Autopilot system should be used.
    • Select RNP PROGRESS page 4 and monitor :
      • ANP vs. RNP
      • XTK and VTK are within limit
  • Missed Approach
    • Initiate missed approach in case of :
      • RNAV system failure
      • RAIM alert
      • FTE is excessive.

Royal Jordanian Crew Training Department

comparison
Comparison

Royal Jordanian Crew Training Department

for feedback please email the crew training department at crew training@rj com
For Feedback please email The Crew Training Department at:crew-training@rj.com

Royal Jordanian Crew Training Department