chapter 6 gases l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Chapter 6 - Gases PowerPoint Presentation
Download Presentation
Chapter 6 - Gases

Loading in 2 Seconds...

play fullscreen
1 / 17

Chapter 6 - Gases - PowerPoint PPT Presentation


  • 188 Views
  • Uploaded on

Chapter 6 - Gases. Physical Characteristics of Gases. Although gases have different chemical properties, gases have remarkably similar physical properties. Gases always fill their containers (recall solids and liquids). No definite shape and volume

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Chapter 6 - Gases' - iliana


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
physical characteristics of gases
Physical Characteristics of Gases
  • Although gases have different chemical properties, gases have remarkably similar physical properties.
    • Gases always fill their containers (recall solids and liquids). No definite shape and volume
    • Gases are highly compressible: Volume decreases as pressure increases Volume increases as pressure decreases
    • Gases diffuse (move spontaneously throughout any available space).
    • Temperature affects either the volume or the pressure of a gas, or both.
definition of a gas
Definition of a Gas
  • Therefore a definition for gas is: a substance that fills and assumesthe shape of its container, diffuses rapidly, and mixes readily with other gases.
three gas laws
Three Gas Laws
  • Pressure
    • force of colliding particles per unit area
    • According to the KMT gases exert pressure due to the forces exerted by gas particles colliding with themselves and the sides of the container
    • SI unit for pressure is kilopascals - kPa
slide5
1 kPa = 1000 N/ 1 m2
  • Atmospheric pressure – pressure exerted by air particles colliding
  • SATP – 100 kPa at 25 °C
  • STP – 101.3 kPa at 0 °C
boyle s law
Boyle’s Law
  • As pressure on a gas increases the volume of the gas decreases proportionally as the temperature is held constant
  • P1V1 = P2V2
charles law
Charles Law
  • the volume of a gas increasesproportionally as the temperature of the gas increases, if the pressure is held Constant
  • V1 = V2T1 T2
kelvin temperature scale
Kelvin Temperature Scale
  • Temperature - the average kinetic energy of the particles making up a substance
  • Kelvin Temp Scale: based of absolute zero — all kinetic motion stops
  • 273°C= 0 K 0°C = 273 K 30°C =303 K -20°C = 253 K
  • Formulas °C = K - 273 K= °C+273
combined gas law
Combined Gas Law
  • This is when all variables (T,P, and V) are changing
    • P1V1 = P2V2

T1 T2

avogadro s theory and molar volume
Avogadro’s Theory and Molar volume
  • The kinetic molecular theory is strongly supported by experimental evidence.
  • The K M theory explains why gases, unlike solids and liquids, are compressible.
  • The K M theory explains the concept of gas pressure.
  • The K M theory explains Boyle’s Law — Increase volume \ decrease pressure
  • The KM theory explains Charles’ Law Increase volume \ increase temperature
history lesson
History Lesson
  • 1808 – Joseph Guy – Lussac
    • “Law of Combining Volumes”
      • When measuring at the same temp and pressure, volumes of gas reactants and products (in chemical reactions) are always in simple whole number ratios
  • 1810 – AmadeoAvogadro
    • “Avogadro’s Theory”
      • Equal volumes of gases at the same temp and pressure have equal number of molecules
molar volume of gases new conversion ratio
Molar Volume of Gases“new conversion ratio”
  • Avogadro says :
          • T1 = T2
          • P1 =P2
          • V1 = V2
          • Then # particles of gas 1 = # particles of gas 2
  • 1 mol = 6.03 x 10 23 particles
  • Lets put these two ideas together……
slide14
Therefore for all gases at a specific temp and pressure there must be a certain volume that contains exactly 1 mole of particles - molar volume
  • The two most standard temps and pressures are STP and SATP
molar volume
Molar Volume
  • When gases are at STP:
    • 1 mole of any gas = 22.4 L/mol
  • When gases are at SATP:
    • 1 mole of any gas = 24.8 L/mol
ideal gas equation
Ideal Gas Equation
  • Ideal Gas — is ahypothetical gas that obeys all the gas laws perfectly under all conditions. It is composed of particles with no attraction to each other. (Real gas particles do have atiny attraction)
  • The further apart the gas particles are, the faster they are moving the less attractive force they have and behave the most like ideal gases
  • The smaller the molecules the closer the gas resembles an ideal gas
  • We assume ideal gases always.

.

equation
Equation
  • PV = nRT
  • P= pressure (kPa)
  • V = volume (L) n = moles (mol) R = universal gas constant (8.31 kPa*L ) Mol * K T = temperature (K)
  • Sometimes the n must be converted to mass after the equation is completed. If this is necessary, use a conversion