1 / 30

A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements

A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements 演講者:孫 翊倫 (Yi- Lun Sun) 指導教授:胡維平 (Wei-Ping Hu ) 中華民國 101 年 6 月 11 日. Content. Chapter 1 A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements Chapter 2 & 3

ilario
Download Presentation

A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements 演講者:孫翊倫(Yi-Lun Sun) 指導教授:胡維平 (Wei-Ping Hu) 中華民國101年6月11日

  2. Content • Chapter 1 A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements • Chapter 2 & 3 Theoretical Prediction of A New Class of Xenon Containing Molecules and Anions • Chapter 4 Theoretical Study on the Excited State Dynamics of Phenol Chromophores • Chapter 5 Theoretical Prediction of A New Type Xe Polymer

  3. Quantum Chemical Calculations Electron correlation → HF MP2 MP3 MP4 QCISD(T) … Full CI Basis set Type 3-21G 6-31+G** aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ ● ● … … … … … … … ∞

  4. Single Level Methods • Example: • MP2/aug-cc-pVDZ • QCISD(T)/aug-cc-pVTZ • Deficiencies: • Low accuracy • Cost expensive

  5. Single Level Methods Error of the reaction energy: CH4 + Cl2→ CH3Cl+ HCl MP2/aug-cc-pVDZ:8.1 kcal/mol QCISD(T)/aug-cc-pVTZ:1.9kcal/mol CH4→ C + 4 H (atomization energy) MP2/aug-cc-pVDZ:25.6 kcal/mol QCISD(T)/aug-cc-pVTZ:6.0 kcal/mol MP2/aug-cc-pVDZ > 5 kcal/mol QCISD(T)/aug-cc-pVTZ > 1 kcal/mol

  6. Single Level Methods Cost: MP2/aug-cc-pVDZ Time:1 unit QCISD(T)/aug-cc-pVTZ Time:288 units ~ couple hours

  7. Multi-level Methods Popular Multi-level Methods: G1, G2, G3, G4 Multi-level Methods with Scaled Energies: (Multi-coefficient Method) MCG3, G3S, G3X , MLSEn+d

  8. G3 theory • Geometry:MP2(full)/6-31G(d) • Ebase: MP4/6-31G(d) • ΔE+ : MP4/6-31+G(d) -Ebase • Δ E2df,p : MP4/6-31G(2df,p) – Ebase • Δ EQCI : QCISD(T)/6-31G(d) – Ebase • Δ EG3Large : MP2(full)/G3Large – [ MP2/6-31G(2df,p) +MP2/6-31+G(d) – MP2/6-31G(d) ] • Δ EHLC : – Anβ – B(nα –nβ) E(G3)= Ebase+ ΔE+ + ΔE2df,p + ΔEQCI + ΔEG3Large +ΔEHLC + EZPE Journal of Chemical Physics, 1998, 109, 7764-7776

  9. MLSEn+d Method E(MLSEn+d) = CHF × E(HF/cc-pV(D+d)Z) +CHF × [E(HF/cc-pV(T+d)Z )– E(HF/cc-pV(D+d)Z)] + CE2 × [E2/cc-pV(D+d)Z] +CE34 × [E(MP4SDQ/cc-pV(D+d)Z) – E(MP2/cc-pV(D+d)Z)] +CQCI × [E(QCISD(T)/cc-pV(D+d)Z) – E(MP4SDQ/cc-pV(D+d)Z)] +CB × γE2 × [E2/cc-pV(T+d)Z – E2/cc-pV(D+d)Z] +C+ × [E2/aug-cc-pV(D+d)Z – E2/cc-pV(D+d)Z] + ESO Chem. Phys. Lett. 2005,412, 430-433

  10. Density functional theory (DFT) • To obtain energies of molecules and their physical properties without solving wave functions. • Common functionals: B3LYP、 MPW1B95 、MPW1PW91、 TPSS1KCIS、B1B95 、M06-2X

  11. The MLSE-DFT Method E(MLSE-DFT) = CWF { E(HF/cc-pV(D+d)Z) + CHF [E(HF/cc-pV(T+d)Z )– E(HF/cc-pV(D+d)Z)] + CE2 [E2/cc-pV(D+d)Z] + CE34 [E(MP4SDQ/cc-pV(D+d)Z) – E(MP2/cc-pV(D+d)Z)] + CQCI [E(QCISD(T)/cc-pV(D+d)Z) – E(MP4SDQ/cc-pV(D+d)Z)] + CB [E2/cc-pV(T+d)Z – E2/cc-pV(D+d)Z] + CHF+ [E(HF/aug-cc-pV(D+d)Z) – E(HF/cc-pV(D+d)Z]) + CE2+ [E2/aug-cc-pV(D+d)Z – E2/cc-pV(D+d)Z] } + (1 - CWF ) { E(DFTX/cc-pV(D+d)Z) + CB1 [E(DFTX/cc-pV(T+d)Z – DFTX/cc-pV(D+d)Z] } + ESO Chem. Phys. Lett. 2007,442, 220.

  12. The MLSE(C1)-DFT Method • E(MLSE(C1)-DFT) = CWF { E(HF/pdz) +CE2 [E2/pdz] +CE34SDQ [E(MP4SDQ/pdz) – E(MP2/pdz)] +CQCID [E(QCISD/pdz) – E(MP4SDQ/pdz)] + CQCI [E(QCISD(T)/pdz) – E(QCISD/pdz)] +CB1E2 [E2/ptz – E2/pdz] + CHF+ [E(HF/apdz) – E(HF/pdz]) +CE2+ [E2/apdz – E2/pdz] +CB2E2 [E2/aptz – E2/apdz] +CB1E34 [E(MP4D/ptz) – E(MP4D/pdz)] } + (1 - CWF ) { E(DFTX/pdz) + CDFT+ [E(DFTX/apdz – DFTX/pdz] } . Chem. Phys. Lett. 2009,475, 141.

  13. Database Train sets and Test sets MGAE109 Database. 109atomization energies (AEs). IP13 and EA13 Database. 13 IPs and 13 EAs HTBH38 Database. 38transition state barrier heights for hydrogen transfer (HT) reactions. NHTBH38 Database. 38transition state barrier heights for non-hydrogentransfer (NHT) reactions.

  14. Accuracy

  15. Computational Cost

  16. Accuracy CH4 + Cl2→ CH3Cl+ HCl MP2/aug-cc-pVDZ:8.1 kcal/mol QCISD(T)/aug-cc-pVTZ:1.9 kcal/mol MLSE(C1)-M06-2X: 1.0 kcal/mol CH4→ C + 4 H (atomization energy) MP2/aug-cc-pVDZ:25.6 kcal/mol QCISD(T)/aug-cc-pVTZ:6.0 kcal/mol MLSE(C1)-M06-2X: 0.13 kcal/mol

  17. For Heavy Elements? CH4 + I2→ CH3I + HI QCISD(T)/aug-cc-pVTZ:4.7 kcal/mol MLSE(C1)-M06-2X :2.7kcal/mol I2→ 2 I QCISD(T)/aug-cc-pVTZ:5.4 kcal/mol MLSE(C1)-M06-2X :4.3kcal/mol

  18. New Database

  19. MLSE(HA-1)

  20. MLSE(HA-1) The different scaling factors were used to the same spin and opposite spin perturbational terms (MP2). CE2S[(E2aa+E2bb)/pdz] + CE2O[(E2ab)/pdz] + CE2+S[(E2aa+E2bb)/apdz] + CE2+O[(E2ab)/apdz] + CB1E2S[(E2aa+E2bb)/ptz] + CB1E2O[(E2ab)/ptz] + CB2E2S[(E2aa+E2bb)/aptz] + CB2E2O[(E2ab)/aptz] +

  21. MLSE(HA-2) ● ● ●

  22. New Database

  23. Accuracy

  24. Computational Cost

  25. Results CH4 + I2→ CH3I + HI QCISD(T)/aug-cc-pVTZ:4.7 kcal/mol MLSE(C1)-M06-2X :2.7 kcal/mol MLSE(HA-1):0.5 kcal/mol MLSE(HA-2):1.0 kcal/mol I2→ 2 I QCISD(T)/aug-cc-pVTZ:5.4 kcal/mol MLSE(C1)-M06-2X :4.3 kcal/mol MLSE(HA-1):0.7 kcal/mol MLSE(HA-2):0.6 kcal/mol

  26. Results CH3I + Cl-→ CH3Cl + I-, Erxn = 12.66 kcal/mol QCISD(T)/aug-cc-pVTZ:2.01 kcal/mol MLSE(C1)-M06-2X :2.22 kcal/mol MLSE(HA-1):0.03 kcal/mol MLSE(HA-2):0.58 kcal/mol CH3Br + Cl-→ CH3Cl + Br- , Erxn = 7.90 kcal/mol QCISD(T)/aug-cc-pVTZ:1.75 kcal/mol MLSE(C1)-M06-2X :0.91 kcal/mol MLSE(HA-1):0.28 kcal/mol MLSE(HA-2):0.75 kcal/mol

  27. Concluding Remarks • MLSE(HA-1) and MLSE(HA-2) performed 0.58 and 0.64 kcal/mol on the MUE(225), with the MUE of HHAE(10) both less than 1 kcal/mol. • MLSE(HA-1) method required 62% cost more than the MLSE(C1)-M06-2X method. But MLSE(HA-2) method only cost 4% more than the MLSE(C1)-M06-2X method.

  28. Concluding Remarks • We recommend MLSE(HA-1) method for the heavy halogens containing systems. • The simplified, but reasonably accurate, MLSE(HA-2) method is an economical alternative for larger systems.

  29. Acknowledgement • Prof. Wei-Ping Hu • Our group members. (Tsung-Hui Li, Jien-Lian Chen et al.) • Department of Chemistry & Biochemistry, National Chung Cheng University • National Science Council • National Center for High-Performance Computing

  30. Thanks for your attention

More Related