300 likes | 431 Views
A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements 演講者:孫 翊倫 (Yi- Lun Sun) 指導教授:胡維平 (Wei-Ping Hu ) 中華民國 101 年 6 月 11 日. Content. Chapter 1 A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements Chapter 2 & 3
E N D
A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements 演講者:孫翊倫(Yi-Lun Sun) 指導教授:胡維平 (Wei-Ping Hu) 中華民國101年6月11日
Content • Chapter 1 A New Set of Accurate Multi-level Methods Including Parameterization for Heavy Elements • Chapter 2 & 3 Theoretical Prediction of A New Class of Xenon Containing Molecules and Anions • Chapter 4 Theoretical Study on the Excited State Dynamics of Phenol Chromophores • Chapter 5 Theoretical Prediction of A New Type Xe Polymer
Quantum Chemical Calculations Electron correlation → HF MP2 MP3 MP4 QCISD(T) … Full CI Basis set Type 3-21G 6-31+G** aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ ● ● … … … … … … … ∞
Single Level Methods • Example: • MP2/aug-cc-pVDZ • QCISD(T)/aug-cc-pVTZ • Deficiencies: • Low accuracy • Cost expensive
Single Level Methods Error of the reaction energy: CH4 + Cl2→ CH3Cl+ HCl MP2/aug-cc-pVDZ:8.1 kcal/mol QCISD(T)/aug-cc-pVTZ:1.9kcal/mol CH4→ C + 4 H (atomization energy) MP2/aug-cc-pVDZ:25.6 kcal/mol QCISD(T)/aug-cc-pVTZ:6.0 kcal/mol MP2/aug-cc-pVDZ > 5 kcal/mol QCISD(T)/aug-cc-pVTZ > 1 kcal/mol
Single Level Methods Cost: MP2/aug-cc-pVDZ Time:1 unit QCISD(T)/aug-cc-pVTZ Time:288 units ~ couple hours
Multi-level Methods Popular Multi-level Methods: G1, G2, G3, G4 Multi-level Methods with Scaled Energies: (Multi-coefficient Method) MCG3, G3S, G3X , MLSEn+d
G3 theory • Geometry:MP2(full)/6-31G(d) • Ebase: MP4/6-31G(d) • ΔE+ : MP4/6-31+G(d) -Ebase • Δ E2df,p : MP4/6-31G(2df,p) – Ebase • Δ EQCI : QCISD(T)/6-31G(d) – Ebase • Δ EG3Large : MP2(full)/G3Large – [ MP2/6-31G(2df,p) +MP2/6-31+G(d) – MP2/6-31G(d) ] • Δ EHLC : – Anβ – B(nα –nβ) E(G3)= Ebase+ ΔE+ + ΔE2df,p + ΔEQCI + ΔEG3Large +ΔEHLC + EZPE Journal of Chemical Physics, 1998, 109, 7764-7776
MLSEn+d Method E(MLSEn+d) = CHF × E(HF/cc-pV(D+d)Z) +CHF × [E(HF/cc-pV(T+d)Z )– E(HF/cc-pV(D+d)Z)] + CE2 × [E2/cc-pV(D+d)Z] +CE34 × [E(MP4SDQ/cc-pV(D+d)Z) – E(MP2/cc-pV(D+d)Z)] +CQCI × [E(QCISD(T)/cc-pV(D+d)Z) – E(MP4SDQ/cc-pV(D+d)Z)] +CB × γE2 × [E2/cc-pV(T+d)Z – E2/cc-pV(D+d)Z] +C+ × [E2/aug-cc-pV(D+d)Z – E2/cc-pV(D+d)Z] + ESO Chem. Phys. Lett. 2005,412, 430-433
Density functional theory (DFT) • To obtain energies of molecules and their physical properties without solving wave functions. • Common functionals: B3LYP、 MPW1B95 、MPW1PW91、 TPSS1KCIS、B1B95 、M06-2X
The MLSE-DFT Method E(MLSE-DFT) = CWF { E(HF/cc-pV(D+d)Z) + CHF [E(HF/cc-pV(T+d)Z )– E(HF/cc-pV(D+d)Z)] + CE2 [E2/cc-pV(D+d)Z] + CE34 [E(MP4SDQ/cc-pV(D+d)Z) – E(MP2/cc-pV(D+d)Z)] + CQCI [E(QCISD(T)/cc-pV(D+d)Z) – E(MP4SDQ/cc-pV(D+d)Z)] + CB [E2/cc-pV(T+d)Z – E2/cc-pV(D+d)Z] + CHF+ [E(HF/aug-cc-pV(D+d)Z) – E(HF/cc-pV(D+d)Z]) + CE2+ [E2/aug-cc-pV(D+d)Z – E2/cc-pV(D+d)Z] } + (1 - CWF ) { E(DFTX/cc-pV(D+d)Z) + CB1 [E(DFTX/cc-pV(T+d)Z – DFTX/cc-pV(D+d)Z] } + ESO Chem. Phys. Lett. 2007,442, 220.
The MLSE(C1)-DFT Method • E(MLSE(C1)-DFT) = CWF { E(HF/pdz) +CE2 [E2/pdz] +CE34SDQ [E(MP4SDQ/pdz) – E(MP2/pdz)] +CQCID [E(QCISD/pdz) – E(MP4SDQ/pdz)] + CQCI [E(QCISD(T)/pdz) – E(QCISD/pdz)] +CB1E2 [E2/ptz – E2/pdz] + CHF+ [E(HF/apdz) – E(HF/pdz]) +CE2+ [E2/apdz – E2/pdz] +CB2E2 [E2/aptz – E2/apdz] +CB1E34 [E(MP4D/ptz) – E(MP4D/pdz)] } + (1 - CWF ) { E(DFTX/pdz) + CDFT+ [E(DFTX/apdz – DFTX/pdz] } . Chem. Phys. Lett. 2009,475, 141.
Database Train sets and Test sets MGAE109 Database. 109atomization energies (AEs). IP13 and EA13 Database. 13 IPs and 13 EAs HTBH38 Database. 38transition state barrier heights for hydrogen transfer (HT) reactions. NHTBH38 Database. 38transition state barrier heights for non-hydrogentransfer (NHT) reactions.
Accuracy CH4 + Cl2→ CH3Cl+ HCl MP2/aug-cc-pVDZ:8.1 kcal/mol QCISD(T)/aug-cc-pVTZ:1.9 kcal/mol MLSE(C1)-M06-2X: 1.0 kcal/mol CH4→ C + 4 H (atomization energy) MP2/aug-cc-pVDZ:25.6 kcal/mol QCISD(T)/aug-cc-pVTZ:6.0 kcal/mol MLSE(C1)-M06-2X: 0.13 kcal/mol
For Heavy Elements? CH4 + I2→ CH3I + HI QCISD(T)/aug-cc-pVTZ:4.7 kcal/mol MLSE(C1)-M06-2X :2.7kcal/mol I2→ 2 I QCISD(T)/aug-cc-pVTZ:5.4 kcal/mol MLSE(C1)-M06-2X :4.3kcal/mol
MLSE(HA-1) The different scaling factors were used to the same spin and opposite spin perturbational terms (MP2). CE2S[(E2aa+E2bb)/pdz] + CE2O[(E2ab)/pdz] + CE2+S[(E2aa+E2bb)/apdz] + CE2+O[(E2ab)/apdz] + CB1E2S[(E2aa+E2bb)/ptz] + CB1E2O[(E2ab)/ptz] + CB2E2S[(E2aa+E2bb)/aptz] + CB2E2O[(E2ab)/aptz] +
MLSE(HA-2) ● ● ●
Results CH4 + I2→ CH3I + HI QCISD(T)/aug-cc-pVTZ:4.7 kcal/mol MLSE(C1)-M06-2X :2.7 kcal/mol MLSE(HA-1):0.5 kcal/mol MLSE(HA-2):1.0 kcal/mol I2→ 2 I QCISD(T)/aug-cc-pVTZ:5.4 kcal/mol MLSE(C1)-M06-2X :4.3 kcal/mol MLSE(HA-1):0.7 kcal/mol MLSE(HA-2):0.6 kcal/mol
Results CH3I + Cl-→ CH3Cl + I-, Erxn = 12.66 kcal/mol QCISD(T)/aug-cc-pVTZ:2.01 kcal/mol MLSE(C1)-M06-2X :2.22 kcal/mol MLSE(HA-1):0.03 kcal/mol MLSE(HA-2):0.58 kcal/mol CH3Br + Cl-→ CH3Cl + Br- , Erxn = 7.90 kcal/mol QCISD(T)/aug-cc-pVTZ:1.75 kcal/mol MLSE(C1)-M06-2X :0.91 kcal/mol MLSE(HA-1):0.28 kcal/mol MLSE(HA-2):0.75 kcal/mol
Concluding Remarks • MLSE(HA-1) and MLSE(HA-2) performed 0.58 and 0.64 kcal/mol on the MUE(225), with the MUE of HHAE(10) both less than 1 kcal/mol. • MLSE(HA-1) method required 62% cost more than the MLSE(C1)-M06-2X method. But MLSE(HA-2) method only cost 4% more than the MLSE(C1)-M06-2X method.
Concluding Remarks • We recommend MLSE(HA-1) method for the heavy halogens containing systems. • The simplified, but reasonably accurate, MLSE(HA-2) method is an economical alternative for larger systems.
Acknowledgement • Prof. Wei-Ping Hu • Our group members. (Tsung-Hui Li, Jien-Lian Chen et al.) • Department of Chemistry & Biochemistry, National Chung Cheng University • National Science Council • National Center for High-Performance Computing