450 likes | 595 Views
Compiler construction in4020 – lecture 1 2. Koen Langendoen Delft University of Technology The Netherlands. mies. parameter i. static link dynamic link ret. address. noot. parameter i. static link dynamic link ret. address. Summary of lecture 11. (nested) routine s
E N D
Compiler constructionin4020 – lecture 12 Koen Langendoen Delft University of Technology The Netherlands
mies parameter i static link dynamic link ret. address noot parameter i static link dynamic link ret. address Summary of lecture 11 • (nested) routines • activation records • routine descriptors • code generation for control flow statements • conditional expressions: true & false labels • case-statement: jump table • for-statement: overflow
parameter n parameter 1 parameter k parameter 1 ... ... Quiz 6.30 Why are parameters stacked in the reverse order? That is, why is the last parameter pushed first when calling a routine? registers dynamic link return address FP local variables working stack SP
Overview:memory management • explicit deallocation • malloc() + free() • implicit deallocation: garbage collection • reference counting • mark & scan • two-space copying
Memory management What has a compiler to do with memory management? • compiler uses heap-allocated data structures • modern languages have automatic data (de)allocation • garbage collection part of runtime support system • compiler usually assists in identifying pointers
Data allocation with explicit deallocation #include <stdlib.h> void *calloc(size_t nmemb, size_t size); void *malloc(size_t size); void free(void *ptr); void *realloc(void *ptr, size_t size); malloc() • find free block of requested size • mark it in use • return a pointer to it. free() • mark the block as not in use.
S I Z E S I Z E S I Z E S I Z E S S S S 1 0 1 0 marked in use marked free pointer to user data Heap layout chunk chunk block block ... in use free low high
S I Z E S I Z E S I Z E S I Z E S I Z E free S S S S S 0 1 1 0 1 Free() ... in use free PROCEDURE Free (Block pointer): SET Chunk pointer TO Block pointer – Admin size; SET Chunk pointer .free TO True;
S I Z E S I Z E S I Z E S I Z E S I Z E in use free S S S S S 0 1 1 1 0 Malloc() ... free FUNCTION Malloc (Block size) RETURNS a generic pointer: SET Pointer TO Free block of size (Block size); IF pointer /= NULL: RETURN pointer; Coalesce free chunks (); RETURN Free block of size (Block size);
S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E in use free S S S S S S 0 1 0 0 1 1 block pointer Free block of size (request) • walk chunks from low to high • check if chunk is free AND large enough • if so, mark chunk in use AND return block pointer ... free
S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E in use free S S S S S S S 0 1 1 1 1 0 0 block pointer Free block of size (request) • walk chunks from low to high • check if chunk is free AND large enough • if so, mark chunk in use AND return block pointer • walk chunks from low to high • check if chunk is free AND large enough • if so, mark chunk in use AND return block pointer • optimization: split chunk to free unused part ... free
Free block of size FUNCTION Free block of size (Block size) RETURNS a generic pointer: SET Chunk ptr TO Heap low; SET Request TO Block size + Admin size; WHILE Chunk ptr < Heap high: IF Chunk ptr .free AND Chunk ptr .size >= Request: Split chunk (Chunk ptr, Request) SET Chunk ptr .free TO False; RETURN Chunk ptr + Admin size; SET Chunk ptr TO Chunk ptr + Chunk ptr .size; RETURN NULL;
S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E in use free S S S S S S S next next next 1 1 0 1 0 1 0 Coalesce free chunks () • walk chunks from low to high • check if chunk is free • if so, coalesce all subsequent free chunks ...
Coalesce free chunks PROCEDURECoalesce free chunks (): SET Chunk ptr TO Heap low; WHILE Chunk ptr < Heap high: IF Chunk ptr .free: SET Next TO Chunk ptr + Chunk ptr .size; WHILE Next< Heap high AND Next .free: SET Next TO Next + Next .size; SET Chunk ptr .size TO Next - Chunk ptr; SET Chunk ptr TO Chunk ptr + Chunk ptr .size;
S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E S I Z E in use free S S S S S S S 1 0 0 1 1 1 0 ... use first field as next ptr Optimizations free: poor performance (linear search) malloc: irregular performance (coalesce phase) solutions: • free lists indexed by size • coalesce at free()
Malloc() with free lists FUNCTION Malloc (Block size) RETURNS a generic pointer: SET Chunk size TO Block size + Admin size; SET Index TO 2log(Chunk size); IF Index < 3: SET Index TO 3; IF Index <= 10 AND Free list[Index] /= NULL: SET Pointer TO Free list[Index]; SET Free list[Index] .next TO Pointer .next; RETURN Pointer + Admin size; RETURN Free block of size (Block size);
Exercise (5 min.) • give the pseudo code for free() when using free lists indexed by size.
Answers PROCEDURE Free (Block pointer): SET Chunk pointer TO Block pointer – Admin size; SET Index TO 2log(Chunk pointer.size); IF Index <= 10: SET Chunk pointer .next TO Free list[Index]; SET Free list[Index] TO Chunk pointer; ELSE SET Chunk pointer .free TO True; // Coalesce subsequent free chunks
Garbage collection • memory allocation is explicit (new) • memory deallocation is implicit • garbage set: all chunks that will no longer be used by the program • chunks without incoming pointers • chunks that are unreachable from non-heap data
A D E F C B Example heap root set
A D E E E F C B B B Garbage heap root set
garbage? E F D A C B Cyclic garbage heap root set • “no-pointers”: NO • “not-reachable”: YES
Compiler assistance:identifying pointers • pointers inside chunks • user-defined data structures • compiler: generate self-descriptive chunks • pointers located outside the heap (root set) • global data + stack • compiler: generate activation record descriptions
Self-descriptive chunks • bitmap per data type • problem: overhead per chunk / interpretation • compiler-generated routine per data type • calls GC for each pointer • problem: recursion • organize data type to start off with n pointers • solution: n can be squeezed into chunk admin
0 2 1 1 2 1 0 1 1 2 Reference counting heap root set • record #pointers to each chunk • reclaim when reference count drops to zero A D B E C F
IF Points into the heap (q): Increment q .ref count; IF Points into the heap (p): Decrement p .ref count; IF p .ref count = 0: Free recursively (p); SET p TO q; target Maintaining reference counts pointer assignment: VAR p, q : pointer; ... p := q; source PROCEDURE Free recursively (Pointer): FOR each field fi of record Pointer: IF Points into the heap (fi): Decrement fi .ref count; IF fi .ref count = 0: Free recursively (fi); Free chunk (Pointer);
A D E F E C B B Mark & scan heap root set • mark all reachable chunks • scan heap for unmarked chunks that can be freed
Mark & scan PROCEDURE Mark (Pointer): IF NOT Points into the heap (Pointer): RETURN; SET Pointer .marked TO True; FOR each field fi of record Pointer: Mark (fi); PROCEDURE Scan (): SET Chunk ptr TO Heap low; WHILE Chunk ptr < Heap high: IF Chunk ptr .marked: SET Chunk ptr .marked TO False; ELSE SET Chunk ptr .free TO True; SET Chunk ptr TO Chunk ptr + Chunk ptr .size;
Advanced marking • problem: mark() is recursive • solution: embed stack in the chunks each chunk records: • a count denoting which child pointer is next • a pointer to the parent node
S p t r p t r p t r p t r p t r p t r p t r p t r p t r 0 0 Advanced marking to parent size S 2 pointer cnt 1 0 mark bit free bit S 1 1 0
p t r p t r p t r p t r p t r Advanced marking:pointer reversal • avoid additional parent pointer • use the n-th child pointer when visiting child n to parent S p t r 2 1 0 S 1 1 0
Two-space copying • most chunks have a short live time • memory fragmentation must be addressed • partition heap in two spaces copy all reachable chunks to consecutive locations from to
to from Two-space copying • most chunks have a short live time • memory fragmentation must be addressed • partition heap in two spaces copy all reachable chunks to consecutive locations from to
D E F A A C B C scan scan scan Copying to to-space from • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space to
D scan scan scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C F to A C
D scan scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C F to A C
D scan scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C to A C F
D scan scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C to A C F
D scan scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C to A C F
D scan Copying to to-space from A • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space B E C to A C F
D scan Copying to to-space from • copy root set • leave forwarding pointers • scan to-space for reachable cells in from-space to A C F
Summary Memory management • explicit deallocation • malloc() + free() • implicit deallocation: garbage collection • reference counting • mark & scan • two-space copying
Homework • study sections: • 5.2.6Compaction • 5.2.7 Generational garbage collection • assignment 2: • make Asterix OO • deadline June 4 08:59 • print handout for lastweek [blackboard]