310 likes | 446 Views
This course, led by Professor D. Budker, explores essential topics in particle physics, including the discovery of weak neutral currents via the Gargamelle bubble chamber at CERN in 1973, particle decay, cross-sections, and the Fermi Golden Rule. It provides insights into decay probabilities, luminosity, Mandelstam variables, and constructing Feynman diagrams. With an emphasis on understanding particle interactions and fundamental principles, this presentation is an excellent resource for students and enthusiasts wanting to deepen their grasp of particle physics concepts.
E N D
Physics 129, Fall 2010; Prof. D. Budker Introduction to particle physicsPart IV
Bubble chamber The Gargamelle at CERN: discovered weak neutral currents in 1973 Great topics for oral presenantion! Professor Donald A. Glaser Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
How particles decay • Decay probability goes as dt: • Particles do not age! • Board work: Mean Lifetime = 1/ • Branching Ratios • Partial decay rates add Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections • Effective area • Inclusive vs. exclusive • Elastic vs. inelastic (different reactions are called channels) • Resonances Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections • Effective area • Differential cross section Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections • Some cross-sections diverge (e.g., for Rutherford scattering) • Effective cut-off Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Mandelstam Variables Universally used! Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Units of cross section Origin: Uranium nucleus 10-24 cm2---as "big as a barn" Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Cross Sections • Luminosity: • number of particles in a beam per unit area per unit time Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Luminosity • What about colliding beams? • Luminosity = collision frequency n1 n2 / beam area Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Luminosity Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
LHC luminosity: reality check Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Fermi Golden Rule • mi– mass of ith particle • pi– 4-momentum of ith particle • S– statistical factor accounting for identical particles • M– amplitude (p1, …. , pn) Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Fermi Golden Rule • Kinematic constraints: • All outgoing particles are on the mass shell • All outgoing particles have positive energy • Energy & momentum conservation Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Fermi Golden Rule • 2π rules: • Every δ gets a 2π • Every d gets a 1/(2π) Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Fermi Golden Rule • With the kinematic constraints, the G.R. simplifies to: • For two-body decay: Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Feynman-Diagram Rules • Goal: figure out amplitude M • Draw all possible diagrams for the process • The amplitudes from different diagrams add Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Feynman-Diagram Rules • For each diagram: • Label external momentapi,label internal momentaqi,draw arrows (arbitrary for internal lines) • For each vertex, write coupling constant • Each internal line propagator: • For each vertex: energy/momentum conservation: (minus for outgoing lines) • Add for each internal line; integrate • Erase the resulting ; multiply by • The result is M ; examples in Ch. 6 of Griffiths Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Higher-order diagrams • Problem: loop integrals (logarithmically) diverge at large q • This is not because the diagrams are bad! • Regularization: introduce a heavy particle cut-off (p. 219) • Renormalization; running coupling constants…. Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Example/interlude: Diagrams in Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Example/interlude: Diagrams in • Vanishes for • Vanishesin the high-frequency limit Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Relativistic Equations Nonrelativistic Relativistic; spin zero Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
The Dirac Equation (relativistic, spin ½) • Introduce 44 Dirac Matrices: Relativistic; spin 1/2 Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Solving the Dirac Equation • Assume wavefunctionindependent of position: Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Solving the Dirac Equation • Four independent solutions: • The Dirac Sea • Plane wave solutions (Sec. 7.2) Electron Electron Positron Positron Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Dirac Spinor Algebra • Some useful facts about spinors: • How do Dirac spinors transform under P? Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Dirac Spinor Algebra • Introduce another matrix: What about 4 ? Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Bilinear Covariants Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html
Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html