Properties of Parallelograms

# Properties of Parallelograms

## Properties of Parallelograms

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. Parallelogram or //ogram or • Definition: A quadrilateral with opposite sides parallel.

2. 1 5 2 6 3 7 4 8 2  4 Corr  Thm 4  7 Alt. Int.  Thm 2  7 Trans. Prop.  6  8 Corr  Thm 8  3 Alt. Int.  Thm 6  3 Trans. Prop. 

3. //ograms  Opposite s are 

4. 1 5 6 2 3 7 4 8 1 and 2 are Supp. Linear Pair Thm 1  3 Corr.  Thm 2 and 3 are Supp. Substitution or Consec. Int.  Thm

5. Q R S T //ograms  Consecutive angles are supplementary. mQ + mR = 180o mR + mS = 180o mS + mT = 180o mT + mQ = 180o

6. Not on vocab sheet! If a parallelogram has one right angle, then it has four right angles.

7. A B 1 3 4 2 C D 1  2 Opposite  are  3  4 Alt. Int.  Thm Reflexive Prop.  ABC  DCB AAS   Thm Corr. Parts of  figures are 

8. Parallelograms  Opposite sides are 

9. A B E C D AB  CD Opposite sides  AE  DE CE  BE Corr. Parts of  figures are  E is the midpoint of AD and CB Def of Midpt. ABE  DCE Alt. Int.  Thm BAE  CDE Alt. Int.  Thm ABE  DCE ASA   Thm

10. //ograms  Diagonals bisect each other.

11. Diagonals of a parallelogram separates the parallelogram into two congruent triangles. ACD CAB A B C D

12. ABCD is a parallelogram. Find x. 4 5 8 20 • A • B • C • D

13. ABCD is a parallelogram. Find mBCD. 54 64 62 58

14. ABCD is a parallelogram. Find mBDC. 54 64 62 58 • A • B • C • D

15. Homework Chapter 6-2 Pg 328: # 3-11, 13proof, 15-30, 46-49