1 / 29

The HADES experiment @GSI

The HADES experiment @GSI. Collaboration: 18 Inst. 125 members. Motivation Detector description Performance outlook. Motivation. Properties of hadrons in strong int. matter: M, G vs r , m B , T, V Vector meson , ,  spectral functions measurements

Download Presentation

The HADES experiment @GSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The HADESexperiment @GSI Collaboration: 18 Inst. 125 members • Motivation • Detector description • Performance • outlook

  2. Motivation • Properties of hadrons in strong int. matter: M, G vsr, mB, T, V • Vector meson , ,  spectral functions measurements • Hadron’s structure: VDM, Form factors, vector meson-nucleon inter. • Dalitz and two-body decays, pN, N reactions • SIS / GSI : heavy ion, proton,pion beams • 0 r 3 r00  T  80 MeV • HADES: systematic dielpton spectroscopy • meson prod. in pp / pp : r = 0 , T = 0 MeV • meson prod. in pA / pA : r = r0 , T = 0 MeV • meson prod. in AA : r = 1-3r0 , T = 80MeV

  3. High Acceptance DiElectron Spectrometer Magnet SC. toroid ( 6 coils) • 2p in f18o < J < 85o Lepton Identification • RICH C4F10 + gas Phot. Det. CsI - cathode • META TOF scintillator wall + • Pre-Shower detector p/ identification META and tracking Tracking p – measurement, vertex reconstruction MDCDrift chambers dx ~ 80 mm (s)

  4. PreShower Magnet Coils HADES@GSI RICH RICH +MDC I Back view

  5. SC Toroid • Imax = 3465 A • Bmax = 3.7 T • Bmax = 0.7 T Dp (q=25°) = 103 MeV/c Dp (q=80°) = 60 MeV/c • Beam operation • I = 2500 A Dp (25°) = 74 MeV/c coil air HADES S.C. Magnet ILSE

  6. Ring Imaging CHerenkov Detector e+e- - identification • Cherenkov light • cos qc= 1/ ß.n(l) • N = N0. lrad.1/ gt2 ( lrad = 40 cm ) • N0 det. characteristics • Radiator (hadron blind!) • 3 ~ ghad < gt < glep • C4F10 : gt = 18.3 • pp> 3 GeV/c • VUV - MirrorPoly-C substr. (2 mm) x/X < 2% Al + MgF2 coating R > 80% • Photon detector (MWPC) CsI - cath. • CaF2 window

  7. RICH in parts Photon detector with CaF2 window & CFK radiator shell

  8. g g e+ e+ Q~ 0.70 p0 Q~ 2.20 e- Conversion e- Dalitz RICH rings Strong sources lead to large comb. backgr.!!!

  9. Multiwire Drift Chambers • 0.7 % mass resolution in the r/w - region • Combinatorial background reduction – e+,e- close pair rejection

  10. IPN Orsay LHE Dubna FZR GSI Multiwire Drift Chambers • 4 layer/sector. • total 33 m3 active area, 27000 cells • y<100 m plane resolution • He-iC4H10 [60-40]gas mixture and low Z material GSI plane ORSAY plane • MDC: participating Institutions: • I: GSI, • II: LHE/JINR Dubna, • III: FZ Rossendorf, • IV: IPN Orsay

  11. x/X0  5 10-4 MDC module Cell characteristic 6 [mm]

  12. Performance of MDC Orsay Spatial Resolution (microns) GSI Dubna FZR Chamber Number • Intrinsic spatial resolution: • Proton beam, silicon tracker • “In-beam” (C+C 1.8 AGeV) Layer efficiency: > 98%

  13. Daughterboards MDC Read-out ASD8 LVL1-connector FPC- connector TDC Motherboard • TDC Features: (8 channels per chip) • 8 channels per chip • 250/500 ps/channel • “2 times (t1, t2) – multi-hit capable • Zero & spike (t1-t2 < 20ns) suppression • Calibration Mode (…mixed trigger • “Time above threshold” (…signal shape, charge): • Efficient Offline noise suppression! • Analog Read-out: • Differential amplifier, ASD8 chip, 8 channels, • 1 fC intr. Noise, 30 mW/channel • adjustable threshold (one for 16 channels)

  14. TOF>450 Ch. p. distribution for C+C @ 1.5 AGeV Outer TOF wall >450: • 6 * 64 scint. Installed. • T line fully operational • dt : 90 – 140 ps • dE/dx measurement • tracking J. Friese, TU München

  15. counts p [MeV/c] deuterons b Mass [MeV/c2] counts Tof [ns] Mass [MeV/c2] Energy loss [MeV] TOF-hadron identification Preliminary Deuteron peak: m0 = 1890 MeV sm = 551 MeV protons

  16. TOF-RICH lepton identification

  17. Pre-Shower/TOF system <450 Pre-Shower Pre-conv Post1-conv Post2-conv. esingle80% Pads TOFINO • tof measurement t0.35 ns Field Sense wires 2 radiation lengths Pb converter target Pre-Shower detector side view beam • 3 pad chambers (20000 pads) • em. showers in Pb converters

  18. C+C1.5 AGeV One event: detector response Pre-converter Post1-converter Post2-Converter p beam e- beam Shower candidate Pre-Conv Pre-Conv Post1-Conv Post1-Conv

  19. RICH-MDC-META lepton identification Data: Nov01C-C 2.0 AGeV magnetic field preliminary q* momentum Log z! tof [ns] tof [ns] q*momentum

  20. RICH-MDC-META lepton identification Data: Nov01C-C 2.0 AGeV magnetic field preliminary • Full HADES simulation and data analysis • RQMD ev.generator simul. Ne/N+ RICH-Track(MDC-META) • RICH & fast tof &shower • MDC I/II (inner ) e- e+ q* momentum [e*MeV/c]

  21. HADES Trigger System • Needslevel 2 trigger: • Ring recognition in RICH • Hit finding and tof calculation in TOF • El. Shower search in Pre-Shower RICH and META candidate matching via azimuthal correlations • Selection of e+e--pairs(momentum and invariant mass analysis) • High rates (105 Hz) • 10ms max. LVL2 trigger decision time) • Parallel- und Pipeline architecture FPGAs, CPLDs andDSPs • 107- 108paricles/s • 105-6interactions/s (1% target) • Level 1 Trigger: • Multiplicity in TOF • 104 _105central events/s • Large data rate3 GByte/s

  22. Second Level trigger flow Second Level Trigger dilepton 1:100

  23. Trigger distribution system • Trigger distribution: LVL1 (TOF Mult.) and LVL2 (MU) via CTU • DAQ synchronized via event number distribution • Total: 50 VME-Modules

  24. RICH IPU Y (pads) IPU-algorithm X correlation Hits found by the IPU and not by the algorithm X (pads) X IPU (pads) 0.2% Hits found by the algorithm and not by the IPU 0.2% X ALGO (pads) 1 ring search mask (13x13 pads) • Pattern reconstruction (96x96 pad plane) • Ring recognition • fixed 80 pads mask (ring/veto region) • local maximum search uncorrelated emulation rings Data: Nov01C-C 1.5 AGeV full field • Discrepancy: 0.4%

  25. Matching Unit Trigger condition % evts evt >= 1 ring 10.5% evt >= 1 lepton 2.9% evt >= 2 rings 4.6% evt >= 2 leptons 1.7% evt >= 1 dilepton 0.3% Preliminary Data: Nov01C-C 1.5 AGeV magnetic field Reference System: offline analysis leptons LVL2 conditions in the MU: • 1 hit in RICH • 1 hit in TOF • Df < 15° lepton Efficiency RICH IPU LVL2 integrated eff 85.3% 84.7% event eff 87.3% 86.6% N. fakes ele/evt0.24 0.19

  26. Outlook • HADES comes into operation(e/p/p sep., LVL2 trig., tracking) • 3 MDC layer will be completed this summer (p3% for /) • DAQ and LVL2 trigger commisioning Phase I (2002 – 2003) : (acc. proposals S200 ,S262) • Continuum below M inv < 600 MeV/c2 ; 0 Dalitz in C+C • High statistics e+,e- production in HI reactions C+ C @ 1 – 2 AGeV(compare to DLS) • e+e- production in p- p p- p @ 0.8 – 1.3 GeV/c(below and above threshold for r/w • e+e- pair acceptances pp  pph pp e+e-

  27. e+e- pairs in C + C collisions 25000 e+e- Ebeam = 1A GeV/c Simulation for 3 MDC setup : needs 2 * 109events ~ 5 days 89000 e+e- Ebeam = 2A GeV/c

  28. e+e- pairs in -+p reactions Pbeam = 0.8 GeV/c Simulation for 3 MDCsetup : 7 days of p- beam @ 1 * 106 s-1 !! Pbeam = 1.3 GeV/c

  29. Collaboration • Bratislava (SAS, PI) • Catania (INFN - LNS) • Clermont-Ferrand (Univ.) • Cracow (Univ.) • Darmstadt (GSI) • Dresden (FZR) • Dubna (JINR) • Frankfurt (Univ.) • Giessen (Univ.) • Milano (INFN, Univ.) • Moscow (ITEP, MEPhI, RAS) • Munich (Tech. Univ.) • Nicosia (Univ.) • Orsay (IPN) • Rez (CAS, NPI) • Sant. de Compostela (Univ.) • Valencia (Univ.)

More Related