1 / 62

Dilepton production in 1-2 AGeV energy range: Recent results from the HADES experiment at GSI.

Dilepton production in 1-2 AGeV energy range: Recent results from the HADES experiment at GSI. Béatrice Ramstein and Thierry Hennino, Tingting Liu, Malgorzata Sudol Institut de Physique Nucléaire d’Orsay, France. Outline. Introduction:

maustin
Download Presentation

Dilepton production in 1-2 AGeV energy range: Recent results from the HADES experiment at GSI.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dilepton production in 1-2 AGeV energy range: Recent results from the HADES experiment at GSI. Béatrice Ramstein and Thierry Hennino, Tingting Liu, Malgorzata Sudol Institut de Physique Nucléaire d’Orsay, France

  2. Outline • Introduction: • motivations of HADES experiments : dilepton production in Heavy_ion and elementary reactions • short status on medium effects • Inclusive e+e- production in heavy-ion reactions C+C, Ar+KCl • pp and dp reactions: inclusive/exclusive dilepton channels, hadronic channels • Perspectives: • Heavy-ion reactions HADES upgrade  FAIR • pion induced reactions • Conclusions

  3. QGP SPS HADES Na60 SIS-100 SIS-300 CBM RHIC AGS hadrons SIS-18 KEK,JLAB,TAPS G7 Motivations of the HADES experiment Exploring the phase diagram of hadronic matter….. • E/A=1-2 AGeV • /o ~ 1-3, T < 100 MeV • N/Apart ≈ 10% ….. using dilepton emission: rare but undistorted probe

  4. A faithful probe of the hot and dense phase: the dilepton pair decay of vector mesons R(A=100)5.5 fm e+ Dilepton spectroscopy gives access to vector meson spectral function e- and are undistorted by strong interactions V e+e- JP=1-

  5. g* g* e+ r, w e+ e- e- N Interest of vector meson study r, w e+ g* e- • V l+l- JP=1- direct coupling to * • Vector Dominance Model (Sakurai 1969): coupling of a real (or virtual) photon to any electromagnetic hadronic current is mediated by a vector meson • Sensitivity of vector meson mass to Chiral Symmetry Restoration on-shell electromagnetic elastic or transition form factor off-shell

  6. Chiral symmetry restoration in medium ≠ 0 “melting of quark condensate “ Klimt, Lutz, Weise, Phys.Lett.B249(1990) 386 SPS - ,-,p beams g,p-,p - beams RHIC LHC SIS 18 SIS100 SIS 200 T [MeV] 300 But the quark condensate is not an observable ! models are needed to relate <qq> to hadron masses - In the limit of massless u,d quarks, exact symmetry of the QCD lagrangian, but not of QCD vacuum and excited states (spontaneous breaking of chiral symmetry)

  7. 15% K. Saito et.al Phys.Rev.C55(1997)2637 Medium modifications (I): 1st scenario: « dropping mass » • Scaling inspired by chiral effective models: • Brown-Rho PRL66(1991) 2720 • QCD sum rules : • Hatsuda and Lee PRC46 (1992) 34 , Kwon et al. PRC78 (2008) 055203 • Quark meson coupling (QMC): • Saito et al. PRC55 (1997) 2637

  8. N(1520)  r r r r D(1232) + ... + N-1 N-1 Medium modifications (II): schematic summary ! see e.g. Rapp and Wambach 0901.3289 for a recent review I 2nd scenario: « in-medium broadening » • Spectral functions of the mesons in the medium: coupling to resonances Hadronic many-body approach Rapp and Wambach EPJA 6 (1999) 415 Rapp, Chanfray and Wambach NPA 617, (1997) 472

  9. QGP SPS HADES Na60 SIS-100 RHIC CBM AGS hadrons SIS-18 Results from ultra-relativistic heavy-ion reactions CERES / CERN Pb (158 AGeV) +Au Na60 / CERN In (158 AGeV) + In CBM   KEK,JLAB,TAPS G7 Adamova et al. PLB 666 (2008) 425 Rapp and Wambach calc. with modified  spectral function Arnaldi et al., PRL 100,022302 (2008) Broadening of  spectral function is favoured, no mass shift + Helios/CERN+Na50/CERN Phenix/RHIC (on-going analysis),

  10. + A p+Cu E=12 GeV G7/CLAS/Jlab QGP HADES Na60 SPS SIS-100 SIS-300 CBM RHIC AGS hadrons SIS-18  + AE = 1.2 - 2.2 GeV KEK,JLAB,TAPS Re-analysis of CBELSA/TAPS results: ° in A reactions at E=1.2-2.2 GeV Kotulla et al. PRL 100, 192302 (2008) G7 No effect on  meson Results at =0, small T

  11. From C. Djalali, Hadron2009

  12. Bevalac (1988-1993) HADES DLS Na60 • pp/pd, Ca+Ca, C+C 1.04 AGeV • mass resolution : 10-20% • 30-40% systematical error Data: R.J. Porter et al.: PRL 79(97)1229 Model: E.L. Bratkovskaya et al.: NP A634(98)168,BUU, vacuum spectral function Strong dilepton enhancement over hadronic cocktails not explained even by in-medium mass shifts and broadening DLS puzzle DLS Results for /o ~ 1-3, T < 100 MeV (Heavy-ion collisions E/A=1-2 AGeV) QGP SPS CBM RHIC AGS SIS-100 SIS-300 SIS-18 Bevalac hadrons KEK,JLAB,TAPS G7

  13. UrQMD calculations Au+Au 1 AGeV n,p r/r0  15 fm/c     N-1 N-1 Specificity of 1-2 A GeV energy range • N/Apart ≈ 10% • long life time of the dense system (up to 15 fm/c)  ~ 1.3 fm/c, ω~ 23 fm/c • dominance of  resonance • resonance matter (33) r/r0 r/r0 1-2 GeV  tot 

  14. Role of resonances in dilepton production at 1-2 AGeV Faessler et al. RQMD Both are linked through electromagnetic form factors • ° Dalitz decay:° e+e- (BR ~ 1.2 %) R  N°,  (1232) , N (1440)… •  Dalitz decay: e+e- (BR ~ 0.6 %) N(1535)  p • /ω vector meson production N(1520)  /ω N , ….. /ωe+e- • Dalitz decay of baryonic resonances: (1232)  Ne+e- (BR ~ 4 10-5) not measured ! + NN Bremsstrahlung NN  NN*  e+e-

  15. SIS The Collaboration • Catania (INFN - LNS), Italy • Cracow (Univ.), Poland • Darmstadt (GSI), Germany • Dresden (FZD), Germany • Dubna (JINR), Russia • Frankfurt (Univ.), Germany • Giessen (Univ.), Germany • Milano (INFN, Univ.), Italy • München (TUM), Germany • Moscow (ITEP,MEPhI,RAS), Russia • Nicosia (Univ.), Cyprus • Orsay (IPN), France • Rez (CAS, NPI), Czech Rep. • Sant. de Compostela (Univ.), Spain • Valencia (Univ.), Spain • Coimbra (Univ.), LIP, Portugal GSI

  16. HADES 2nd generation dilepton spectrometer Side View START • Acceptance:Full azimuth, polar angles 18o - 85o • Pair acceptance  0.35 • Particle identification: • RICH,Time Of Flight, Pre-Shower (pad chambers & lead converter) ( also MDC (K)) • Trigger: • 1st Level: charged particle multiplicity (~10 kHz) • 2nd Level: single electron trigger (~2.5 kHz) • Momentum measurement • Magnet: ∫Bdl = 0.1- 0.34 Tm • MDC: 24 Mini Drift Chambers • Leptons: x~ 140  per cell, p/p ~ 1-2 % • M/M ~ 2% at  peak FW  < 7°

  17. IPN contribution 4th plane of drift chambers drift cell (14x10 mm2) active area 3.5 m2 IPN team Jean-Louis Boyard (retired 2008) Jean-Claude Jourdain (retired 2001) Thierry Hennino Tingting Liu (PhD) Emilie Morinière (PhD 2008) Béatrice Ramstein Michèle Roy-Stephan (retired 2006) Malgorzata Sudol (part-time post-doc) …+Jacques Van de Wiele (phenomenology) R&D détecteurs, J. Pouthas, P. Rosier 6 drift chambers constructed at IPN

  18. HADES subdetectors Magnet Coils MDC I RICH PreShower LH2 target (IPN) TOF

  19. Lepton Identification with HADES Drift Chamber: Track reconstruction Pre-Shower condition RICH pattern e- + + + momentum % velocity momentum ∙ charge C+C 2 AGeV

  20. 2005 Ar + KCl 1.75 AGeV medium effects on dielectron spectra, strangeness 2006 p + p 1.25 GeV exclusive ppe+e- (°,) pion production  Dalitz decay first measurement 2007 p + p 3.5 GeV ω line shape and cocktail (,,,,, strangeness 2007 2007 d + p 1.25 AGeV pn Bremsstrahlung /  Dalitz decay d + p 1.25 AGeV 2008 p+Nb 3.5 GeV Reference for medium effects, strangeness HADES experimental program 2001/2 understand dilepton spectrum/test transport models in simple case: low to very low medium effects + check of DLS C + C 2 AGeV C + C 1 AGeV 2004 Validation of detector performance (pp elastic) ° and  Dalitz decays (helicity distribution), “free” cocktail 2004 p + p 2.2 GeV exclusive ppe+e- (°,) 2009HADES upgrade

  21. results from Heavy Ion reactions ….

  22. Dielectron DATA analysis: normalization to 0 (Nπo = ½ (Nπ- + Nπ+)) Comb. Background (CB) subtraction Mee < 150 MeV/c2 Like-sign pairs Mee > 150 MeV/c2 event mixing Signal: ~ 18400 counts Me+e- ≥ 150 MeV/c2: ~ 646 counts Efficiency correction Measured rates span over 5 orders of magnitude Systematic errors: 20% efficiency correction 10% combinatorial background 15% 0 normalization 22% - 27% Total

  23. Calculation: E.L.Bratkovskaya et al. Nucl. Phys. A634 (1998) 168 Hadron String Dynamics E. Bratkovskaya and W.Cassing, nucl-th/0712.0635 DLS DLS M [GeV/c²] HADES NN Bremsstrahlung and the DLS puzzle 1997:transport models failed to explain DiLeptonSpectrometer (Berkeley) data 2007:DLS and HADES agree and are compatible with new transport model calculations G.Agakichiev et al. Phys. Lett. B 663,43 (2008) M [GeV/c²] new (contradictory) treatments of Bremsstrahlung: R. Shyam & U.Mosel, PRC67 (2003) 065202 L.P. Kaptari, B. Kämpfer, NPA 764 (2006) 338

  24. NN Bremsstrahlung and  Dalitz decay N  graphs N N,  nucleon graphs  graphs nucleon graphs Mee(GeV/c2) NN  NN* NNe+e-   Ne+e- (BR from QED = 4.2 10-5 not measured) q2 = M*2 > 0 Quantum interference Time-Like electromagnetic form factors two recent full quantum mechanical One Boson Exchange calculations: 1) R. Shyam & U. Mosel, PRC 79 (2009) 03520 2) L.P. Kaptari, B. Kämpfer, NPA 764 (2006) 338  pp dominated by  graphs  nucleon graphs (Bremsstrahlung) larger in pn than in pp collisions  Yields differ in the two models by factors 3-4 HSD model uses enhanced yield for NN bremsstrahlung, according to K&K OBE model

  25. BUU Barz et al. UrQMD Bleicher et al. IQMDThomere et al. RQMD: E.Santini et al C+C 2 AGeV  Dalitz pn HADES data: Phys Rev. Lett 98 , 052302 (2007) Maybe, but a lot of contradictory calculations are pretty good too …. DLS puzzle solved by new calculation of NN Bremsstrahlung ? pn Bremsstrahlung and Delta Dalitz decay are important issues for understanding intermediate mass dilepton yield

  26. HSD transport code prediction E.L. Bratkovskaya, W. Cassing, Nucl.Phys.A 807 (2008) 214 -250. pp -> ppω HSD OBE Inclusive /ω cross-sections not known important ingredient of transport model calculations  can be measured in pp reactions

  27.  Dalitz decay : pp E=1.25 GeV • NN Bremsstrahlung: dp (pn) E=1.25 AGeV • °,  production pp E= 2.2 GeV • /ω production: pp E=3.5 GeV E<  production threshold • Specific instrumental tools: LH2 target, proton/deuteron beams, Forward Wall HADES Forward Wall 2 m spectator proton deuteron beam 7 m ( 0.5–7) First results from HI reactions …. …..call for study of elementary processes

  28. hadronic channels • pp elastic scattering  tracking, efficiencies, resolutions • pppp°, pppp  consistency of hadronic and leptonic reconstructions • pppn+, pppp°, pppp  pp+-0 check of resonance model ( dilepton cocktail) • pp pppp+-0 (on-going analysis)

  29. exclusive pion production channels measured by HADES • absolute normalisation • from elastic scattering • Very good agreement with resonance model • Teis et al. ZPA 356(1997) 421 + refinements in both isospin channels • Consistent picture at E=1.25 GeV and 2.2 GeV • important check for dilepton analysis (° and resonances are dilepton sources !) T. Liu PhD Orsay arXiv:0909.3399[nucl-ex]

  30. n qn p p D++ pppp  and  production : acceptance corrected results  production: 1 exchange  decay: 1+1.35cos2 Neutron angular distribution in CM + angular dist. in (+ ,p) ref. frame preliminary p+ D++ preliminary qp+ p Total cross sections compared to systematics preliminary preliminary preliminary T. Liu PhD Orsay arXiv:0909.3399[nucl-ex]

  31. inclusive e+e- analysis at E=1.25 GeV/ nucleon

  32. Results for pp reaction at 1.25 GeV p p p p D+ * e+ e-- GM(q2) GM(0)~3 0.6m2 q2 = M2inv(e+e-) = M*2 > 0 PLUTO ROOT-based event generator I. Fröhlich et al, arxiv:0708.2382 [nucl-ex] I. Fröhlichet al,arxiv:0909.5373 [nucl-ex] • resonance model: Teis et al. Zeit. Phys.A356(1997) 421+ refinements • ° Dalitz decay  ° = 4.5 mb branching ratio ° → e+e-1.2 % •  Dalitz decay : =3/2  °= 6.75 mb • branching ratio  → Ne+e-(QED :4.2 10-5) Time-like N-  transition electromagneticform factors subm. to PRL 0910.5875[nucl-ex] Iachello and Wan • Resonance model results: • ° Dalitz • Dalitz)+ effect of Iachello FF

  33. Quasi-free «  pn » dilepton spectra • Comparison to resonance model • ° Dalitz decay  ° = 8.6 mb branching ratio ° →e+e- 1.2 % •  Dalitz decay : =3/2  °= 12.9 mb New features with respect to pp reactions: • participant neutron Fermi momentum ( Paris potential) •  contribution (due to Fermi motion) subm. to PRL 0910.5875[nucl-ex]  Dalitz ° Dalitz  Dalitz (BR ~ 4.2 10-5)+ + effect of Iachello FF Additionnal sources with respect to pp? NN Bremsstrahlung is absent !!  Check with full One Boson Exchange calculations

  34. pp/pn reactions at 1.25 GeV: Comparison to simulations with OBE differential cross sections : R. Shyam & U.Mosel, PRC67 (2003) 065202 L.P. Kaptari, B. Kämpfer, NPA 764 (2006) 338 Kaptari & Kämpfer Shyam & Mosel pp OK with Shyam & Mosel overestimated by K&K  critical test for models HADES np data: a new puzzle ??

  35. pp/pn reactions at 1.25 GeV:transport model calculations pp allows to dicriminate among models HADES np data: a new puzzle ?? HSD: E.Bratkovskaya et al.NPA 807(2008)214 IQMD: J. Aichelin et al.

  36. Towards a consistent description of dilepton spectra from different systems C+C 2 A GeV • Refinement of HSD model • the vector-meson production via the LUND string has been reduced in order to mach pp exp. data better • - the isospin dependence for the channels NN-> V+NN and pi+N-> V+N have been improved p+p 1.25 GeV Ar+KCl 1.75 A GeV C+C 1 A GeV quasi-free n+p 1.25 GeV preliminary • need for description of both HI and elementary collisions with same set of parameters • Not yet fully achieved !

  37. N+N dilepton spectra as a reference for A+A     N-1 N-1 • ηcontributions subtracted ! • yield normalized to M(π0) preliminary preliminary x3 • « experimental » indication • for emission from the dense phase • resonance propagation

  38. exclusive ppppe+e-analysisE=1.25 GeV

  39. ppp+pp°ppe+e- Dilepton mass distribution in very good agreement with ° and  Dalitz decay pp p+ppe+e- consistent with inclusive dilepton analysis Mee>140 MeV/c2 simulation pppe+e-X missing mass MX HADES data preliminary Selection of ppppe+e- channel is efficient mp MX(GeV/c2) exclusive analysis : ppppe+e-at 1.25 GeVusing pe+e- events (i) W. Przygoda’s analysis B.Ramstein Hadron 2009 proceedings 200 events for Me+e- > 140 MeV/c2 preliminary 0.2

  40. exclusive analysis (ii) ppppe+e-at 1.25 GeV preliminary p p 1 p2 D+ p e+ q2=M2inv(e+e-)=M2* e- (p,e+,e-) invariant mass(GeV/c2) preliminary cos(CMpe+e-) • reconstructed by (p,e+,e-) Mee>140 MeV/c2 No acceptance corrections ! 2 indistinguishible protons (p1,e+,e-) (p2,e+,e-) acceptance corrected simulation of  production + Dalitz decay (cf hadronic channels) dominance of ppp + p pe+e- room for pp Bremsstrahlung contribution?

  41. e-  * e+  N fit 1+B cos2 B=1.110.32 preliminary cos exclusive analysis ppppe+e-at 1.25 GeV: helicities helicity angle   Dalitz decay: +  p g* pe+e-: only transverse g* (if Coulomb interaction is neglected) Helicity distributions *  e+e- d/dΩe~ 1+cos2 True helicity from pe+e- events: *in  ref. frame acceptance corrected • First measurement of  Dalitz decay! • Dalitz decay branching ratio in agreement with QED value (4.2 10 -5) within ~20% • Helicity consistent with 1+cos2

  42. / meson production Inclusive e+e- in pp reaction at 3.5 GeV • Inclusive cross sections measurements • Meson production mechanisms • Reference to the pA and AA reactions

  43. Vector mesons / at SIS p+p at 3.5 GeVp+ 92Nb 3.5 GeV 40Ar+ 38KCl1.75 AGeV preliminary 2008 “on-line spectrum!” w preliminary h D Very preliminary r sM(w)  15 MeV/c2 Inclusive pp X cross-section Input for transport models • First observations of  production at SIS energies • possibility of check of p+A results from KEK & CBTAPS/CLAS 43

  44. Cocktail simulation for pp E=3.5 GeV •  production through  resonance =3/2 ° • production from one pion exchange model • , ,  phase space production • particle decays • relativistic BW with mass dependent width • cross sections • πo : 15  4 mb • η : 1.04  0.03 mb • ω : 0.28  0.07 mb • ρ : 0.36  0.08 mb preliminary A. Rustamov et al. Hadron 2009

  45. On-shell/off-shell  production: cocktail subtracted data : p+p E=3.5 GeV • After subtraction of °,  and  • remaining contributions: • and baryonic resonance PLUTO: phase space HSD: LUND string Model UrQMD: production through resonance preliminary Off-shell  production through resonances  meson production needs improvement in transport models Analysis: A. Rustamov (GSI)

  46. Future plans • HADES upgrade • Resistive Plate Chambers , 120 << 450 1320 channels, t85 ps • New DAQ electronics ~20kHz LVL1 • New MDCI • Ag+Ag at 1.65 AGeV and Au+Au at 1.25AGeV, 2010-2012 • Pion beams 2012 • move to SIS100 (FAIR), E ~ 8 AGeV • experiments at SIS100 (FAIR)cca 2016-2017 CBM 8 – 45 GeV/u HADES 2 – 8 GeV/u

  47. Perspectives of pion beam experiments

  48. Motivations of N experiments with HADES • Well-known interactions • Exclusive channels - p   n • Special interest of / subthreshold production (sqrt(s)=1.72 GeV) • Strangeness production  (1405), and K • spectacular destructive interference of /ω production linked to coupling to baryon resonances (S11, S31, D13, D33) • electromagnetic structure of resonances • importance for A, AA dilepton spectra M. Lutz , B. Friman, M. Soyeur Nuclear Physics A 713 (2003) 97–118 p- p → e+e-n sqrt(s)=1.65 GeV Pluto r w E =0.66 GeV p=0.80 GeV/c total See also predictions by Titov & Kämpfer EPJA12 (2001) 217

  49. Motivations of dilepton spectroscopy in A experiments • New HSD calculations HSD: preliminary • strong medium effects are predicted HSD’09 => similar to W. Cassing, Y.S. Golubeva, A.S. Iljinov, L.A. Kondratyuk, Phys. Lett. B 396 (1997) 26

  50. Conclusions: HADES experiments • Inclusive spectra in pp/pn and heavy-ion reactions: • critical tests for transport models • a consistent description of dilepton production in all systems is needed !! ↓ Prerequisite to medium effect investigations • Ar+KCl • future Ag+Ag and Au+Au reactions • HADES@FAIR • Not mentionned: very fruitful strangeness production program: « Deep sub-threshold - production in Ar+KCl reactions at 1.76 AGeV » PRL 103 (2009) 132301 «  decay: a relevant source for K- production at SIS energies » • Specificity of elementary reactions: • Sensitivity to time-like electromagnetic form factors of nucleon and resonances • Selectivity on dilepton sources (  Dalitz decay,  Dalitz decay,  production,…) • Very new ppppe+e- exclusive analysis ! • First measurement of  Dalitz decay • helicity distributions to be investigated in dp and heavy-ion reactions • perspectives of pion beam experiments ( 2011)

More Related