slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Data Mining: An Introductory Overview PowerPoint Presentation
Download Presentation
Data Mining: An Introductory Overview

Loading in 2 Seconds...

play fullscreen
1 / 33

Data Mining: An Introductory Overview - PowerPoint PPT Presentation


  • 305 Views
  • Uploaded on

KI2 - 6. Data Mining: An Introductory Overview. Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser University, Canada http://www.cs.sfu.ca. modified by Marius Bulacu. Kunstmatige Intelligentie / RuG. Overview.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Data Mining: An Introductory Overview' - hija


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

KI2 - 6

Data Mining:An Introductory Overview

Jiawei Han and Micheline Kamber

Intelligent Database Systems Research Lab

School of Computing Science

Simon Fraser University, Canada

http://www.cs.sfu.ca

modified by Marius Bulacu

Kunstmatige Intelligentie / RuG

overview
Overview
  • Motivation: Why data mining?
  • What is data mining?
  • Data Mining: On what kind of data?
  • Data mining functionality
  • Are all the patterns interesting?
  • Classification of data mining systems
  • Major issues in data mining
motivation necessity is the mother of invention
Motivation: “Necessity is the Mother of Invention”
  • Data explosion problem
    • Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories
  • We are drowning in data, but starving for knowledge!
  • Solution: Data warehousing and data mining
    • Data warehousing and on-line analytical processing (OLAP)
    • Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases (KDD)
what is data mining
What Is Data Mining?
  • Data mining (knowledge discovery in databases):
    • Extraction of interesting (non-trivial,implicit, previously unknown and potentially useful)information or patterns from data in large databases
  • Alternative names
    • Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
  • What is not data mining?
    • (Deductive) query processing
    • Expert systems or small ML/statistical programs
why data mining potential applications
Why Data Mining? — Potential Applications
  • Database analysis and decision support
    • Market analysis and management
      • target marketing, customer relation management, market basket analysis, cross selling, market segmentation
    • Risk analysis and management
      • Forecasting, customer retention, improved underwriting, quality control, competitive analysis
    • Fraud detection and management
  • Other Applications
    • Biomedical (detection of epidemics, DNA)
    • Text mining (news group, email, documents) and Web analysis.
    • Intelligent query answering
market analysis and management 1
Market Analysis and Management (1)
  • Where are the data sources for analysis?
    • Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
  • Target marketing
    • Find clusters of “model” customers who share the same characteristics: interest, income level, spending habits, etc.
  • Determine customer purchasing patterns over time
    • Conversion of single to a joint bank account: marriage, etc.
  • Cross-market analysis
    • Associations/correlations between product sales
    • Prediction based on the association information
market analysis and management 2
Market Analysis and Management (2)
  • Customer profiling
    • data mining can tell you what types of customers buy what products (clustering or classification)
  • Identifying customer requirements
    • identifying the best products for different customers
    • use prediction to find what factors will attract new customers
  • Provides summary information
    • various multidimensional summary reports
    • statistical summary information (data central tendency and variation)
corporate analysis and risk management
Corporate Analysis and Risk Management
  • Finance planning and asset evaluation
    • cash flow analysis and prediction
    • contingent claim analysis to evaluate assets
    • cross-sectional and time series analysis (financial-ratio, trend analysis, etc.)
  • Resource planning:
    • summarize and compare the resources and spending
  • Competition:
    • monitor competitors and market directions
    • group customers into classes and a class-based pricing procedure
    • set pricing strategy in a highly competitive market
fraud detection and management 1
Fraud Detection and Management (1)
  • Applications
    • widely used in health care, retail, credit card services, telecommunications (phone card fraud), etc.
  • Approach
    • use historical data to build models of fraudulent behavior and use data mining to help identify similar instances
  • Examples
    • auto insurance: detect a group of people who stage accidents to collect on insurance
    • money laundering: detect suspicious money transactions
    • medical insurance: detect professional patients and ring of doctors
fraud detection and management 2
Fraud Detection and Management (2)
  • Detecting inappropriate medical treatment
    • blanket screening tests
  • Detecting telephone fraud
    • Telephone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm.
    • identify discrete groups of callers with frequent intra-group calls, especially mobile phones
  • Retail
    • Identify customer buying behaviors
    • Discover customer shopping patterns and trends
    • Improve the quality of customer service
    • Achieve better customer retention and satisfaction
biomedical data mining and dna analysis
Biomedical Data Mining andDNA Analysis
  • DNA sequences - 4 basic building blocks (nucleotides): adenine (A), cytosine (C), guanine (G), and thymine (T).
  • Gene: a sequence of hundreds of individual nucleotides arranged in a particular order
  • Humans have around 100,000 genes
  • Tremendous number of ways that the nucleotides can be ordered and sequenced to form distinct genes
  • Semantic integration of heterogeneous, distributed genome databases
    • Current: highly distributed, uncontrolled generation and use of a wide variety of DNA data
    • Data cleaning and data integration methods developed in data mining will help
dna analysis examples
DNA Analysis: Examples
  • Similarity search and comparison among DNA sequences
    • Compare the frequently occurring patterns of each class (e.g., diseased and healthy)
    • Identify gene sequence patterns that play roles in various diseases
  • Association analysis: identification of co-occurring gene sequences
    • Most diseases are not triggered by a single gene but by a combination of genes acting together
    • Association analysis may help determine the kinds of genes that are likely to co-occur together in target samples
  • Path analysis: linking genes to different disease development stages
    • Different genes may become active at different stages of the disease
    • Develop pharmaceutical interventions that target the different stages separately
  • Visualization tools and genetic data analysis
other applications
Other Applications
  • Sports
    • game statistics (shots blocked, assists, and fouls) to gain competitive advantage
  • Astronomy
    • JPL and the Palomar Observatory discovered 22 quasars with the help of data mining
  • Internet Web Surf-Aid
    • IBM Surf-Aid applies data mining algorithms to Web access logs for market-related pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.
data mining a kdd process
Data Mining: A KDD Process

Knowledge

Pattern Evaluation

  • Data mining: the core of knowledge discovery process.

Data Mining

Task-relevant Data

Selection

Data Warehouse

Data Cleaning

Data Integration

Databases

steps of a kdd process
Steps of a KDD Process
  • Learning the application domain:
    • relevant prior knowledge and goals of application
  • Creating a target data set: data selection
  • Data cleaning and preprocessing: (may take 60% of effort!)
  • Data reduction and transformation:
    • Find useful features, dimensionality/variable reduction, invariant representation.
  • Choosing functions of data mining
    • summarization, classification, regression, association, clustering.
  • Choosing the mining algorithm(s)
  • Data mining: search for patterns of interest
  • Pattern evaluation and knowledge presentation
    • visualization, transformation, removing redundant patterns, etc.
  • Use of discovered knowledge
data mining and business intelligence
Data Mining andBusiness Intelligence

Increasing potential

to support

business decisions

End User

Making

Decisions

Business

Analyst

Data Presentation

Visualization Techniques

Data Mining

Data

Analyst

Information Discovery

Data Exploration

Statistical Analysis, Querying and Reporting

Data Warehouses / Data Marts

OLAP, MDA

DBA

Data Sources

Paper, Files, Information Providers, Database Systems, OLTP

architecture of a typical data mining system
Architecture of a Typical Data Mining System

Graphical user interface

Pattern evaluation

Data mining engine

Knowledge-base

Database or data warehouse server

Filtering

Data cleaning & data integration

Data

Warehouse

Databases

data mining on what kind of data
Data Mining:On What Kind of Data?
  • Relational databases
  • Data warehouses
  • Transactional databases
  • Advanced DB and information repositories
    • Object-oriented and object-relational databases
    • Spatial databases
    • Time-series data and temporal data
    • Text databases and multimedia databases
    • Heterogeneous and legacy databases
    • WWW
data mining functionalities 1
Data Mining Functionalities (1)
  • Concept description: Characterization and discrimination
    • Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions
  • Association (correlation and causality)
    • Multi-dimensional vs. single-dimensional association
    • age(X, “20..29”) ^ income(X, “20..29K”) à buys(X, “PC”) [support = 2%, confidence = 60%]
    • contains(T, “computer”) à contains(x, “software”) [1%, 75%]
data mining functionalities 2
Data Mining Functionalities (2)
  • Classification and Prediction
    • Finding models (functions) that describe and distinguish classes or concepts for future prediction
    • E.g., classify countries based on climate, or classify cars based on gas mileage
    • Presentation: decision-tree, classification rule, neural network
    • Prediction: Predict some unknown or missing numerical values
  • Cluster analysis
    • Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
    • Clustering based on the principle: maximizing the intra-class similarity and minimizing the inter-class similarity
data mining functionalities 3
Data Mining Functionalities (3)
  • Outlier analysis
    • Outlier: a data object that does not comply with the general behavior of the data
    • It can be considered as noise or exception but is quite useful in fraud detection, rare events analysis
  • Trend and evolution analysis
    • Trend and deviation: regression analysis
    • Sequential pattern mining, periodicity analysis
    • Similarity-based analysis
  • Other pattern-directed or statistical analyses
are all the discovered patterns interesting
Are All the “Discovered” Patterns Interesting?
  • A data mining system/query may generate thousands of patterns, not all of them are interesting.
    • Suggested approach: Human-centered, query-based, focused mining
  • Interestingness measures: A pattern is interesting if it is easily understood by humans, valid on new test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
  • Objective vs. subjective interestingness measures:
    • Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
    • Subjective: based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.
can we find all and only interesting patterns
Can We Find All and Only Interesting Patterns?
  • Find all the interesting patterns: Completeness
    • Can a data mining system find all the interesting patterns?
    • Association vs. classification vs. clustering
  • Search for only interesting patterns: Optimization
    • Can a data mining system find only the interesting patterns?
    • Approaches
      • First generate all the patterns and then filter out the uninteresting ones.
      • Generate only the interesting patterns — mining query optimization
data mining confluence of multiple disciplines
Data Mining:Confluence of Multiple Disciplines

Database

Technology

Statistics

Data Mining

Machine

Learning

Visualization

Information

Science

Other

Disciplines

data mining classification schemes
Data Mining: Classification Schemes
  • General functionality
    • Descriptive data mining
    • Predictive data mining
  • Different views, different classifications
    • Kinds of databases to be mined
    • Kinds of knowledge to be discovered
    • Kinds of techniques utilized
    • Kinds of applications adapted
a general classification of data mining systems
A General Classification ofData Mining Systems
  • Databases to be mined
    • Relational, transactional, object-oriented, object-relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW, etc.
  • Knowledge to be mined
    • Characterization, discrimination, association, classification, clustering, trend, deviation and outlier analysis, etc.
    • Multiple/integrated functions and mining at multiple levels
  • Techniques utilized
    • Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, neural network, etc.
  • Applications adapted
    • Retail, telecommunication, banking, fraud analysis, DNA mining, stock market analysis, Web mining, Weblog analysis, etc.
properties of a data mining system
Properties of a Data Mining System
  • Coupling with DB and/or data warehouse systems
  • Scalability
    • Row (or database size) scalability
    • Column (or dimension) scalability
    • Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable
  • Visualization tools
    • “A picture is worth a thousand words”
    • Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining
  • Data mining query language and graphical user interface
    • Easy-to-use and high-quality graphical user interface
    • Essential for user-guided, highly interactive data mining
major issues in data mining 1
Major Issues in Data Mining (1)
  • Mining methodology and user interaction
    • Mining different kinds of knowledge in databases
    • Interactive mining ofknowledge at multiple levels of abstraction
    • Incorporation of background knowledge
    • Data mining query languages and ad-hoc data mining
    • Expression and visualization of data mining results
    • Handling noise and incomplete data
    • Pattern evaluation: the interestingness problem
  • Performance and scalability
    • Efficiency and scalability of data mining algorithms
    • Parallel, distributed and incremental mining methods
major issues in data mining 2
Major Issues in Data Mining (2)
  • Issues relating to the diversity of data types
    • Handling relational and complex types of data
    • Mining information from heterogeneous databases and global information systems (WWW)
  • Issues related to applications and social impacts
    • Application of discovered knowledge
      • Domain-specific data mining tools
      • Intelligent query answering
      • Process control and decision making
    • Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem
    • Protection of data security, integrity, and privacy
summary
Summary
  • Data mining: discovering interesting patterns from large amounts of data
  • A natural evolution of database technology, in great demand, with wide applications
  • A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
  • Mining can be performed in a variety of information repositories
  • Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
  • Classification of data mining systems
  • Major issues in data mining