1 / 13

Digital Electronics

Course Introduction, Number Systems, Conversion between Bases, and Basic Binary Arithmetic (Lecture #1). Digital Electronics. Course Introduction 1. Number Systems 2. Binary Arithmetic and Binary Codes 3. Boolean Algebra 4. Basic Logic Gates 5. Boolean Expressions 6. Karnaugh Maps

heinz
Download Presentation

Digital Electronics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Course Introduction, Number Systems, Conversion between Bases, and Basic Binary Arithmetic (Lecture #1) Digital Electronics

  2. Course Introduction 1. Number Systems 2. Binary Arithmetic and Binary Codes 3. Boolean Algebra 4. Basic Logic Gates 5. Boolean Expressions 6. Karnaugh Maps 7. Minimization of Boolean Expressions 8. Analysis and Design of Combinational Logic Circuits 9. Single-bit and Multi-bit Adder Circuits 10. Multiplexers and Demultiplexers 11. Decoders and Encoders 12. Tri-state devices 13. Latches and Flip-Flops 14. Registers and Counters 15. Analysis and Design of Sequential Logic Circuits 16. Memory cells and Memory design (see syllabus)

  3. Numerical Representation • Science, Technology, Business all deal with • Quantities • Measure, monitored, arithmetically manipulated, recorded…… • Quantities Represented in two ways • Analogue • Digital

  4. Analog • Represented by meter movement proportional to the value of the quantity • Temperature, voltage, current • Common mercury thermometer • Automobile speedometer • Continuous set of values

  5. Digital representation • Not by continuous variable indicators but by digits (step by step) • Digital watch • Digital speedometer • Digital temperature gauge

  6. Numbers

  7. 52 • What does this number represent? • What does it mean?

  8. 1011001.101 • What does this number represent? • Consider the base (or radix) of the number.

  9. Number Systems

  10. Number Systems • R is the radix or base of the number system • Must be a positive number • R digits in the number system: [0 .. R-1] • Important number systems for digital systems: • Base 2 (binary): [0, 1] • Base 8 (octal): [0 .. 7] • Base 16 (hexadecimal): [0 .. 9, A, B, C, D, E, F]

  11. Positional Notation D = [a4a3a2a1a0.a-1a-2a-3]R D = decimal value ai = ith position in the number R = radix or base of the number Number Systems

  12. Power Series Expansion D = an x R4 + an-1 x R3 + … + a0 x R0 + a-1 x R-1 + a-2 x R-2 + … a-m x R-m D = decimal value ai = ith position in the number R = radix or base of the number Number Systems

  13. Number Systems

More Related