1 / 30

Biogeochemical processes of methane emission and uptake

Biogeochemical processes of methane emission and uptake. Edward Hornibrook Bristol Biogeochemistry Research Centre Department of Earth Sciences University of Bristol. Outline. 1. Methanogenesis & methanotrophy. 2. Anaerobic C mineralisation in wetlands - uncertainties?.

hedya
Download Presentation

Biogeochemical processes of methane emission and uptake

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biogeochemical processes of methane emission and uptake Edward Hornibrook Bristol Biogeochemistry Research Centre Department of Earth Sciences University of Bristol

  2. Outline 1. Methanogenesis & methanotrophy 2. Anaerobic C mineralisation in wetlands - uncertainties? 3. Stable isotopes & methane 4. Current BBRC research

  3. Alessandro Volta (1776) "Combustible Air" Wolfe (1993)

  4. methanogens methanotrophs Universal Phylogenetic Tree of Life (16S & 18S RNA) Madigan et al (2003)

  5. C6H12O6 + 6 O2 6 CO2 + 6 H2O DG0 = -2870 kJ/mol C6H12O6 3 CO2 + 3 CH4 DG0 = -418 kJ/mol

  6. I. CO2-type substrates • Carbon dioxide, CO2 • Formate, HCOO- • Carbon monoxide, CO III. Acetotrophic substrates • Acetate, CH3COO- • Pyruvate, CH3COCOO- Methanogenic Substrates II. Methyl substrates • Methanol, CH3OH • Methylamine, CH3NH3+ • Dimethylamine, (CH3)2NH2+ • Trimethylamine, (CH3)3NH+ • Methylmercaptan, CH3SH • Dimethylsulphide, (CH3)2S

  7. Methanosarcinales 7 Genera & 19 species; Substrates: mainly methanol & methylamines; Methanosarcina & Methanosaeta + acetate; Methanohalophilus + methylsulphides; Methanosalsum + dimethylsulphide Diversity of methanogenic Archaea Methanobacteriales 5 Genera & 25 species; Substrates: mainly H2 + CO2, formate; Methanosphaera + methanol, Methanothermus+ reduction of S0 Methanococcales 5 Genera & 9 species; Substrates: mainly H2 + CO2, formate; Methanococcus + pyruvate Methanomicrobiales 8 Genera & 22 species; Substrates: mainly H2 + CO2, formate; Methanocorpusculum, Methanoculleus & Methanolacinia + alcohols Methanopyrales 1 Genera & 1 species:Methanopyrus; hyperthermophile (110°C) Substrates: H2 + CO2

  8. CH3CH2COO- CH3CH2CH2COO- H2 + CO2 + HCOO- fermentive bacteria acetogenic bacteria CH3COO- H2 + CO2 methanogenic Archaea Anaerobic Chain of Decay complex organics (cellulose, hemicellulose) homoacetogenic bacteria

  9. kJ/reaction DG DG0' -207 -319 C6H12O6 + 4 H2O  2 CH3COO- + 2 HCO3- + 4 H+ + 4 H2 -135 -284 C6H12O6 + 2 H2O  CH3(CH2)2COO- + 2 HCO3- + 3 H+ + 2 H2 +48 -18 CH3(CH2)2COO- + 2 H2O  2 CH3COO- + H+ + 2 H2 +76 -6 CH3CH2COO- + 3 H2O  CH3COO- + HCO3- + H+ + H2 +19 -37 2 CH3CH2OH + 2 H2O  2 CH3COO- + 2 H+ + 4 H2 +47 -18 C6H5COO- + 6 H2O  3 CH3COO- + CO2 + 2 H+ + 3 H2 4 H2 + HCO3- + H+ CH4 + 3 H2O -136 -3 -31 -25 2 CH3COO- + H2O  CH4 + HCO3- -7 DG0' standard conditions: solutes 1 M; gases 1 atm The importance of syntrophy 4 H2 + 2 HCO3- + H+ CH3COO- + 4 H2O -105 DG  typical in situ abundance of reactants & products: VFAs 1 mM; HCO3- 5 mM; glucose 10 mM; CH4 0.6 atm; H2 10-4 atm Madigan et al (2003)

  10. Methanotrophic Bacteria Aerobic methane oxidation (Proteobacteria) • Low affinity methanotrophs (culturable) • High affinity methanotrophs (no isolates to date) 2. Anaerobic methane oxidation • Marine environments • Methanogen/ sulphate-reducer consortia

  11. methane mono- oxygenase CH4 ===> CH3OH Substrates used by methylotrophs & methanotrophs • Methane, CH4 • Methanol, CH3OH • Methylamine, CH3NH3+ • Dimethylamine, (CH3)2NH2+ • Trimethylamine, (CH3)3NH+ • Tetramethylammonium, (CH3)4N+ • Trimethylamine N-oxide, (CH3)3NO • Trimethylsulphonium, (CH3)3S+ • Formate, HCOO- • Formamide, HCONH2 • Carbon monoxide, CO • Dimethyl ether, (CH3)2O • Dimethyl ether, (CH3)2O • Dimethyl carbonate, CH3OCOOCH3 • Dimethyl sulphoxide, (CH3)2SO • Dimethylsulphide, (CH3)2S

  12. Methanotrophic Bacteria Type I (Ribulose monophosphate C-assimilation pathway) Methylomonas,Methylomicrobium, Methylobacter, Methylococcus Type II (Serine C-assimilation pathway) Methylosinus,Methylocystis, Methylocella*, Methylocapsa* *acidophiles isolated from peat bogs (Dedysh et al. 2000; 2002)

  13. Anaerobic C Mineralisation in Wetlands Tenet 1: Methanogenesis is the terminal step in anaerobic decay of organic matter in freshwater wetlands. Tenet 2:In most freshwater systems, 2/3 of methanogenesis occurs via acetate fermentation and 1/3 by CO2 reduction (H2). Vile et al. (2003). Global Biogeochem. Cycles17(2), 1058. • anaerobic C mineralisation in freshwater wetlands along a natural sulphate gradient • 36 to 27% SO42- reduction vs. <<1% methanogenesis • ? fermentation of organic acids  CO2 Wieder & Lang (1988). Biogeochemistry5, 221-242. • anaerobic C mineralisation in West Virginian Sphagnum bog • 38 to 64% SO42- reduction vs. 2.8 to 11.7% methanogenesis Bridgham et al. (1998). Ecology79, 1545-1561. • anaerobic C mineralization via methanogenesis: 0.5% in bogs and <2% in fens

  14. Decoupling of Terminal Carbon Mineralisation Pathway Lansdown et al. (1992). Geochim. Cosmochim. Acta56(9), 3493-3503. • Kings Lake Bog, Washington State (ombrotrophic peatland) • CH4 derived mainly from CO2/H2; confirmed with 14C tracer experiments Hines et al. (2001). Geophys. Res. Lett.28(22), 4251-4254. • northern wetlands: CH4 derived mainly from CO2/H2 • Acetate accumulation to high levels; ultimately degraded aerobically to CO2 • ?contribution to high levels of DOC/ organic acids in ombrotrophic bogs

  15. spring- summer early spring winter 800 600 acetate (mM) 400 200 0 Buck Hollow Bog (Michigan, USA) -45 -50 d13C-CH4 (‰) -55 -60 CR AF CR -65 Jul Jun Apr Nov Jan Feb 20 15 soil (peat) temperature (°C) 10 5 0 Jul Jun Apr Nov Jan Feb Avery et al. (1999)

  16. 5 1000 0 800 600 -5 Acetate (mM) 400 Depth (cm) -10 200 -15 100 -20 25 -25 0 1999 Turnagain Bog (ombrotrophic peatland, Anchorage Alaska; pH 4.6 to 5.1) Duddleston et al. (2002). Geophys. Res. Lett.28(22), 4251-4254.

  17. Questions • How much C in acetate normally destined for CH4 is being converted to CO2? • How stable is the decoupling? 'Underachieving' northern wetlands? O2 CO2 SO42- H2S • Possible causes?: (i) temperature (ii) pH (iii) vegetation (iv) trophic level acetate  CH4 • What is the mechanism of acetate production? (i) heterotrophic or (ii) autotrophic VFAs • CH4 flux & VFAs? (Christensen et al. 2003) H2/CO2 CH4

  18. International Standard D, 13C, 15N, 18O or 34S enriched w.r.t. standard D, 13C, 15N, 18O or 34S depleted w.r.t. standard d-values - + 0 D, 13C, 15N, 18O, 34S (‰)

  19. atmospheric CH4 biological & abiological CH4 petroleum & coal eukaryotic algae VPDB C3 plants C4 plants freshwater carbonates marine carbonates atmospheric CO2 Stable Carbon Isotopes -90 -80 -70 -60 -50 -40 -30 -20 -10 0 +10 13C (‰) after Hoefs (1997)

  20. ~ -36±7‰ ~ -43±7‰ ~ -66±5‰ ~ -60‰ ~ -60‰ 13C of CH4 Sources 13Cwt. avg. ~ -54.4‰ 13Catmosphere ~ -47.3‰ Biomass Burning ~ -24±3‰ Coal Mining Natural Gas ~ -50±2‰ Landfills ~ -60±5‰ Ruminants Termites Rice Paddies ~ -63±5‰ Oceans Gas Hydrates -40 to -86‰ Freshwater ~ -70±5‰ -60±5‰ Natural Wetlands 0 10 15 20 25 5 Methane Flux (% of total) Tyler et al. (1988), Wahlen (1994), Quay et al. (1991, 1999), Breas et al (2002)

  21. CO + 1000 CH + 1000 CO -CH = DCO -CH = CO - CH 2 2 4 2 2 4 4 4 marine (CO2 reduction) DC ~ 86‰ DC ~ 54‰ DC ~ 40‰ freshwater (acetate fermentation) aC = 1.090 aC = 1.055 aC = 1.040 methanotrophy or thermogenesis 20 10 0 -10 13C-CO2 (‰) -20 -30 -40 -50 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 13C-CH4 (‰) Whiticar M. J., Faber E., and Schoell M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - Isotope evidence. Geochimica et Cosmochimica Acta50, 693-709.

  22. d13C of CH4 with pathway confirmed with 14C tracers acetate d13C-CH4 CO2-reduction d13C-CH4 Study Environment coastal marine -62 ‰ -39 to -37 ‰ Alperin et al. (1992) peatland Lansdown et al. (1992) -73 ± 4 ‰ n/a rice paddy Sugimoto & Wada (1993) -43 to -30 ‰ -77 to -60 ‰ -43 ± 10 ‰ -62 to -58 ‰ coastal marine Blair et al. (1993) freshwater estuary n/a -72 ± 2.2 ‰ Avery (1996) peatland (May) Avery et al. (1999) -43.8 ± 12 ‰ -72 ± 1.3 ‰ peatland (June) Avery et al. (1999) -71 ± 1.3 ‰ -44.5 ± 5.4 ‰

  23. (r2 = 0.83; n = 29) Point Pelee Marsh: 180 cm = -21.3‰ surface = -42.3‰ (r2 = 0.64; n = 55) Sifton Bog: 20 DC = 54‰ DC = 86‰ 10 DC = 40‰ 0 13C-CO2 (‰) -10 -20 CR AF -30 -90 -80 -70 -60 -50 -40 -30 13C-CH4 (‰) Hornibrook et al. (2000)

  24. O = CH3 - C - O- C3 compost (soybean meal & rice straw): 13C = -26.5‰ dried rice plants: 13C (CH3COOH) = -32.1‰ kudzu (fresh green leaves): 13C (CH3COOH) = -32.9‰ 13C (CH3-) 13C (COOH) dried rice plants: -39.7‰ -24.4‰ kudzu: -42.9‰ -22.9‰ intersection: -42.3‰ (CH4) -21.3‰ (CO2) Sugimoto & Wada (1993)

  25. Bog 3850 Bog S4 Sugimoto & Wada (1993) = -23.9 ± 4.8‰ = -40.7 ± 6.1‰ Other Wetlands 20 CR AF 10 0 13C-CO2 (‰) -10 -20 -30 -40 -90 -80 -70 -60 -50 -40 -30 13C-CH4 (‰) Hornibrook et al. (2000)

  26. DC = 86‰ DC = 54‰ 500 cm 100 cm DC = 40‰ 170 cm 12 cm 0 cm 65 cm Rainy River Peatland (N. Ont.) Kings Lake Bog (WA, USA) Ellergower Moss (Scotland) Other Wetlands 20 CR AF 10 0 13C-CO2 (‰) -10 -20 -30 -40 -90 -80 -70 -60 -50 -40 -30 13C-CH4 (‰) Aravena et al. (1993), Lansdown et al. (1992), Waldron et al. (1999)

  27. -60±5‰ CH4 emissions from wetlands flux ? flux ? 20 CO2 reduction 10 acetate fermentation deep 13C-CO2 (‰) 0 -10 shallow shallow -20 -90 -80 -70 -60 -50 -40 -30 13C-CH4 (‰) Hornibrook et al. (2000)

  28. UK Sites • determine the prevalence of these d13C distributions in different classes of natural wetlands (SW England & Wales) • determine CH4 pathway predominance using 14C tracers • determine relationship between pore water distribution and d13C signature of CH4 emissions • Ms. Helen Bowes (NERC Ph.D. student)

  29. Field sites 1.Cors Caron 2.Tor Royal, Dartmoor 3.Llyn Mire 4.Blanket bog, Elan Valley 5.Gors Lywd, Elan Valley 6.Crymlyn Bog 7.Wicken Fen 7 5 4 1 3 6 2

  30. Summary • The relative proportions of anaerobic processes in freshwater wetlands needs to be better characterised. • How wide spread is decoupling of terminal stages of anaerobic C mineralisation in northern wetlands? • What controls decoupling? Can systems switch TCM processes? • Can stable isotope signatures of CH4 be used as an accurate proxy for biogeochemical and physical processes? Models • Better understanding of anaerobic C flow needed to represent microbial activity accurately in process-based models • Integrated models of gas abundance/ emission + accurate simulation of stable isotope signatures.

More Related