micro nano technologies pour applications hyperfr quence thales research technology n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology PowerPoint Presentation
Download Presentation
Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology

Loading in 2 Seconds...

play fullscreen
1 / 51

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology - PowerPoint PPT Presentation


  • 129 Views
  • Uploaded on

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology. Afshin Ziaei, Sébastien Demoustier, Eric Minoux. Outline. Application hyperfréquence à THALES: Antenne à réseau réflecteur Micro-technologies: RF MEMS à THALES Research & Technology

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology' - hayden-sellers


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
micro nano technologies pour applications hyperfr quence thales research technology

Micro- & Nano-technologies pour applications hyperfréquenceà Thales Research &Technology

Afshin Ziaei, Sébastien Demoustier, Eric Minoux

Research & Technology

outline
Outline
  • Application hyperfréquence à THALES:

Antenne à réseau réflecteur

  • Micro-technologies: RF MEMS à THALES Research & Technology
    • Micro-commutateur capacitif
    • ZrO2-MEMS switch
    • ZrO2-MEMS SPDT
    • Power Handling and Life-time of PZTRF MEMS
  • Nano-technologies for RF applications
    • Nano-commutateurs
    • Nano-antennes
thales reflect array antenna1

Metallic Grid

{

Epoxy radome

j

j

j

Drivers

Drivers

Drivers

...

{

Multilayers electronic board

THALES Reflect Array Antenna

MIRABEL (1998)

elementary phase shifter
Elementary phase shifter

RF-DC decoupling capacitances

PIN-diodes

Wave-guide flange

mems for power switching
MEMS for Power Switching

SEM picture

Si micro-machined, metal membrane

Electrostatic actuation

Capacitive switch using high K dielectric material for high Con/Coff ratio (~150)

Series or shunt switch designs

mems for power switching1
MEMS for Power Switching
  • MEMS technology used : ‘ Surface micro-machining ’

TiW / Al 0.7 m

Au 3.6 m

Si3N4 0.2 m

TiW/Au 0.6 m

SiO2 2 m

Si HR or glass substrate

Au CPW line

W = 80 m

S = 120 m

Schematic of cross section (Shunt Switch)

Control electrode (TiW)

Holes are etched into the membrane in order to facilitate the membrane ‘ delivery ’

mems for power switching2

120 µm

120 µm

80 µm

100 µm

Control pad

GND

SGN

GND

MEMS for Power Switching
slide10

SEM pictures of fabricated switches

Ground

membrane

command electrode

gap

signal RF out

signal RF in

membrane

Ground

Gap : g = 3 m

Membrane width : 100 m

Dielectric thickness : g0 = 0.2 m

slide12

Insertion losses (Membrane in up position)

(20 GHz):S12 : -0.15 dB

(40 GHz):S12 : -0.2 dB

slide14

Return losses

S11Membrane in up position (The membrane is unactuated )

S11Membrane in down position

(The membrane is actuated)

(20 GHz):S11 : 13 dB

(40 GHz):S11 : 10 dB

(20 GHz):S11 : 3 dB

(40 GHz):S11 : 1 dB

0-40 GHz measurements

thales results
Thales results
  • Results under 0dBm

Key characteristics of TRT MEMS RF Switch

slide16

Series MEMS switches

Conception

Line of command

plan de masse

ON state : Membrane in down position

OFF state : Membrane in up position

120

80

120

120

plan de masse

V1

V1

V2

High resistivity

resistors

slide18

Increasing switching ratio (

)

How do we improve switch performance?

Increasing Cdown for a given Cup

slide19

Influence of K on switch isolation

Simulations HFSS

Isolation (dB)

f(GHz)

Much higher isolation in DOWN state than previous design

Replace Si3N4 with high dielectric constant ZrO2film

slide21

Switch measured characteristics: Insertion loss

Shunt ZrO2switch characteristics in the UP state

Insertion loss (dB)

Frequency (GHz)

slide22

Switch measured characteristics: Return loss

Shunt ZrO2switch characteristics in the UP state

Return loss (dB)

Frequency (GHz)

slide23

Switch measured characteristics: Isolation

Shunt ZrO2switch characteristics in the DOWN state

Isolation (dB)

Frequency (GHz)

slide24

Switch measured characteristics: Return loss

Shunt ZrO2switch characteristics in the DOWN state

Return loss (dB)

Frequency (GHz)

slide25

MEMS SPDT Switch (ZrO2)

Signal IN

Signal OUT1

Signal OUT2

Coplanar Waveguide

slide26

Signal OUT 3

Signal OUT 2

MEMS SPDT Switch (ZrO2)

Signal IN 1

On

Off

THALES design,

Serial-serial PZT-PZT

slide27

1

3

2

Frequency (GHz)

Frequency (GHz)

MEMS SPDT Switch (ZrO2) without packaging (X band)

Membrane down position (S13 in the on state)

S13

S33

S33in the on state (Membrane down position)

slide28

1

3

2

S12

Frequency (GHz)

S22

Frequency (GHz)

MEMS SPDT Switch (ZrO2) without packaging (X band)

Membrane up position (in the off state)

S22 in the off state (Membrane up position)

slide29

1

3

2

S11

Frequency (GHz)

S23

Frequency (GHz)

MEMS SPDT Switch (ZrO2) without packaging (X band)

Membrane up position (in the off state)

slide30

RF

Probe

DUT

RF

Probe

Power handling measurements (10 GHz)

Power Handling of RF MEMS Capacitive shunt switches

DC Power

supply

10-12 GHz

Synthesizer

TWT-Amplifier

Attenuator(1)

Directional

Coupler

DC Bias Tee

Spectrum

Analyser

Attenuator(2)

Network

Analyser

Attenuator(4)

Attenuator(3)

slide31

Power Handling of RF MEMS Capacitive shunt switch

PZTShunt capacitive switch

under 0dBm (10 GHz)

slide32

Power Handling of RF MEMS Capacitive shunt switch

Measured down-state isolation versus input power at 10GHz

slide33

Power Handling of RF MEMS Capacitive shunt switch

Measured up-state Insertion Loss versus input power at 10GHz

slide34

RF

Probe

PC-Labview

DUT

RF

Probe

Power Meter

Lifetime measurements (10 GHz)

High power RF lifetime of THALES MEMS switch at 10GHz

TWT-Amplifier

DC Power

supply

10-12 GHz

Synthesizer

Attenuator(1)

Directional

Coupler

DC Bias Tee

Network

Analyser

Attenuator(2)

Spectrum

Analyser

Attenuator(4)

Attenuator(3)

slide35

RF lifetime of THALES MEMS switch at 10GHz

Cold switching (37 dBm)

Measured up-state Insertion Loss versus input power at 10GHz

slide36

RF lifetime of THALES MEMS switch at 10GHz

Cold switching (37 dBm)

Measured down-state isolation versus input power at 10GHz

slide37

RF lifetime of THALES MEMS switch at 10GHz

RF Lifetime at 10 GHz

10 Billion Cycles at 37 dBm

32 Devices Tested at 36 dBm and Room Temp.

25 Devices Completed 10 Billion Cycles (Stopped Test)

6 Devices Completed 1 Billion Cycles (Stopped Test)

1 Device Failed at 0.72 Billion Cycles

8 KHz Cycle Rate

0.69 Billion Cycles/Day

10 Billion Cycles in 15 Days

cns switch
CNs switch

J. E. Jang et al., Appl. Phys. Lett. 87, 163114 (2005) 

“Nanoelectromechanical switches with vertically aligned carbon nanotubes”

Department of engineering, University of Cambridge

nems @ trt
NEMS @ TRT
  • Why carbon nanotube based NEMS?
  • High isolation, low losses  from MEMS properties
  • Low actuation voltage  < 10 V
  • High switching speed  ~ a few ns
  • High power handling  exceptional electrical and mechnical properties of CNs
  • High integration density
  • Low cost
  • Low consumption

From nanometer size of CNs

  • Main difficulty
  • Achieving reproducible and routinely fabrication process of CN switches
nems @ trt1
NEMS @ TRT

TRT has developed a growth technology of highly homogeneous vertical CNs

nems @ trt2
NEMS @ TRT

Ohmic switch

(metal/metal contact)

Capacitive switch

(metal/dielectric/metal contact)

nems @ trt3
NEMS @ TRT

Coupling CNs with coplanar waveguides for RF switching

slide44

Radiated

Field

-/4

I0

Current

Distribution

0

Generator

/4

Dipole

Dipole

Length

CN Antennas

  • Advantages of CN antennas:
  • High integration
  • High density circuits
  • High frequency resonnators
  • Applications of CN antennas:
  • Wireless communications between nano-sized devices/organisms and macroscopic world
  • Antenna arrays at high frequencies
  • Thales: 60-110 GHz
  • Particular electrical properties:
  • High characteristic impedance & high losses
  • High relaxation frequency (>50GHz)
  • High wave velocity (/50 - /100)
slide45

CN Antennas

  • Technical issues:
  • Dipole fabrication: FIB
  • Impedance matching: 50 - 10k
  • Emission pattern measurements:
  • Radiation efficiency – 60 dB
slide46

Conclusion

  • Conclusion
  • Key RF performance characteristics for a Zro2-SPDT switch are at 10 Ghz:
  • insertion loss of 0.15 dB and isolation of 28 dB .
  • RF lifetimes exceeding 1010 cycles achieved at input Power level of 36 dBm
  • Research on nanotubes RF NEMS is underway at Thales Research & Technology