1 / 10

6.4 keV (Fluorescence) 6.7 keV (GC-plasma)

銀河系の中心は過去本当に明るかったか? 京大(理) 小山勝二. 銀河中心鉄輝線( 6.4 / 6.7 keV Line) の起源 京大(理) 小山勝二. 6.4 keV Map. 6.4 keV/6.7 keV line 、連続成 分(冪 1.8-1.9 )の強度分布は Sgr A* を中心に左右非対称。 3 成分 〔 起源)を分離しよう (1) 6.7 keV line の角度分布 (2) 視野を16分割して、それ  ぞれの値の相関 (3)  6.7 keV line 、より高電離、 高エネルギーの K 輝線比から

Download Presentation

6.4 keV (Fluorescence) 6.7 keV (GC-plasma)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 銀河系の中心は過去本当に明るかったか? 京大(理) 小山勝二 銀河中心鉄輝線(6.4/6.7 keV Line)の起源 京大(理) 小山勝二 6.4 keV Map 6.4 keV/6.7 keV line、連続成 分(冪1.8-1.9)の強度分布は Sgr A*を中心に左右非対称。 3成分〔起源)を分離しよう (1) 6.7 keV line の角度分布 (2) 視野を16分割して、それ  ぞれの値の相関 (3) 6.7 keV line、より高電離、 高エネルギーのK輝線比から プラズマ温度(kT=6.5 keV)を 決めプラズマ成分を分離  6.4 keV (Fluorescence) 6.7 keV (GC-plasma)

  2. (5-10 keV)= (5.91+-0.64)10-8x (6.7 keV)+0.55 x(6.4 keV) 6.7 keV flux の分布 点源の分布 Muno et al.2004 (1) 6.7 keV の角度分布は指数関数、 一方点源の寄与は冪(-1)関数(点線)   6.7 keVは点源からではない。    当然6.4 keVも点源からではない。 (2) 6.4/6.7 keV flux と5-10keV flux にはいい相関はない。 しかし (6.7 keV flux) + 0.55 * (6.4 keV flux) を とると 5-10keV fluxに見事に比例する。 (3) 高温プラズマ成分(6.5 keV~冪: 2.4) ~Power-law (冪:1.4) 銀河中心X線は次の3成分 -------------------------------------------------- 特徴 連続成分 相対強度 ----------------------------- 6.7 keV kT=6.5 keV 2 Γ~ 2.4 6.4 keV Γ~ 2 1 その他  Γ~ 0.9 1 (point sources : Muno et al.) kT=6.5 keV Γ= 1.4

  3. 6.4 keV map: origin?

  4. 6.4 keV Clumps Radio Arc Sgr B2 NH (1022cm-2) 96(88-121) Power-law (Γ) 3.2 (2.6-4.1) 6.4 keV (eV) 6399 (6394-6404) Sgr C Equivalent Width (keV) 1.13 M0.74-0.09 NH (1022cm-2) 40 (29-54) Power-law (Γ) 1.4(0.7-1.8) 6.4 keV (eV) 6406 (6400-6412) Equivalent Width (keV) 1.55 M359.5-0.2 Sgr B1

  5. Origin of the 6.4 keV clumps Inner shell IonizationbyElectrons or X-rays ? Inner Shell Ionization Electrons vs X-rays --------------------------------------------- Equivalent witdh (keV) of the 6.4 keV line 0.3 - 0.6 1 - 1.5 Energy (keV) of the Max Cross Section 10-100 7.1 Absorption NH (cm-2) ~1021~1024 Most of the 6.4 keV clumps show strong Ka line with the equivalent width of 1.1 – 2.1 keV, and deep K-edge absorption with 2 – 10 x 1023 cm-2 (>> 1 x 1023 :the interstellar absorption to the GC) X-rays is more likely than Electrons.

  6. G 0.570 M 0.66 ~10pc 6.4 keV line History of Sgr B2 from 1994 to 2005 Direct evidence: time variability from the Sgr B2

  7. 6.4 keV 6.7 keV 6.4 keV 6.7keV 3.5 - 3.0- 2.5- 2.0- 6.4 keV M0.66 6.7 keV Full Region 1.4 - 1.2- 1.0- 0.8- 1.5- 1.0- 0.5- 6.4 keV G0.57

  8. Physical size of the clump complex is nearly 10 pc. Therefore, such a large flux change within 10 years is impossible by any charged particle. Only possible scenario of this time variability is due to an irradiation of variable X-rays (X-ray Reflection Nebula). More than a few hundred years ago, Sgr A* had been very active in X-rays; 106 times brighter than now at ~300 years ago, decayed to less than a half after ~10 years. The X-rays hit the Sgr B clouds after ~300-years travel. The clouds re-emitted the 6.4 keV photons. Like a time delayed-echo, the X-ray echo is now just arriving at the Earth, when Sgr A* is falling into a quiescent state.

  9. すざく (Koyama et al. 2007) 黒、赤:6.7 keV 青:点源 10-6 10-6 (point source) 10-7 preliminary 158 10-7 Energy (keV) 0.1 1 Distance from Sgr A* (degree) 5 10 Energy (keV) Chandra (Muno et al.2004) diffuse Fe Si S point source

  10. 3.1 鉄輝線強度分布 6.7 keV輝線強度 西側 東側 黒:東側 赤:西側 表面輝度 (10-6 ph/s/cm2/arcmin2) 6.7 keV輝線強度 ・銀径<0.3゚ 東側の方が強い  ・GC成分+リッジ成分 ↓ 広がり 東側:0.24゚±0.02゚ (FWHM) 西側:0.19゚±0.02゚ cf. ぎんが:0.9゚ 輝線強度比  ・プラズマ温度に対応  ・0.2~0.6 → kT=5~7 keV  ・平均値 GC:0.39±0.06       リッジ:0.21±0.09 輝線強度比

More Related