bloque iv tema 156 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Bloque IV * Tema 156 PowerPoint Presentation
Download Presentation
Bloque IV * Tema 156

Loading in 2 Seconds...

play fullscreen
1 / 9
hanna-wolf

Bloque IV * Tema 156 - PowerPoint PPT Presentation

117 Views
Download Presentation
Bloque IV * Tema 156
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Bloque IV * Tema 156 MEDIDAS DE DISPERSIÓN Matemáticas Acceso a CFGS

  2. MEDIDAS DE DISPERSIÓN • Nos dan una idea clara, aunque comprimida, de la desviación de los valores en una serie estadística respecto de la media. • RECORRIDO Es la diferencia entre los valores mayor y menor de la variable. • DESVIACIÓN Es la diferencia entre un valor y la media aritmética de la serie. Pueden ser valores negativos o positivos. • La suma aritmética de todas las desviaciones de una serie es cero. • DESVIACIÓN MEDIA Es la MEDIA aritmética de la suma de valores absolutos de todas las desviaciones de una serie. • ∑ | xi - x |.fi • Dm = -----------------, que da siempre un valor positivo. • ∑ fi • Se emplea para comparar dos series semejantes. Matemáticas Acceso a CFGS

  3. VARIANZA • Es la MEDIA ARITMÉTICA de los cuadrados de las desviaciones respecto de la media. • ∑ [ (xi - x )2 . fi ] ∑ xi2. fi • V = ------------------------ = ----------- -- x2 • ∑ fi ∑ fi • DESVIACIÓN TÍPICA • Es la raíz cuadrada de la varianza. • Junto con la media, es la medida que más se emplea en estadística • COEFICIENTE DE VARIACIÓN • Es el cociente de la desviación típica por la media aritmética. • CV = s / x , que suele darse en porcentajes. • Si el resultado es mayor del 30%, en lugar de la media emplearemos la mediana o la moda para tomar todo tipo de decisiones. Matemáticas Acceso a CFGS

  4. Desviación Típica (σ) El 68% de todos los valores que puede tomar x se encuentran entre (x-σ) y (x+σ) Frecuencias relativas 68 % x-σ x x+σ Modalidades Matemáticas Acceso a CFGS

  5. Desviación Típica (σ) Frecuencias relativas 68 % x-3σx-2σx-σx x+σ x+2σ x+3σ 95 % 99 % Matemáticas Acceso a CFGS

  6. Ejemplo_1 Calificaciones de 100 alumnos de una clase en Matemáticas Variable discreta. Tabla ampliada. • VARIANZA • ∑ fi .xi 2 • V = ------------- - x 2 = 25,80 – 4,82 • ∑ fi • V = 2,76 • DESVIACIÓN TÍPICA • S = √V =√2,76 = 1,66 • DESVIACIÓN MEDIA • Dm = ∑ |xi-x| / ∑ fi = 174/100 = • = 1,74 • COEFICIENTE DE VARIACIÓN • CV = s / x = 1,66 / 4,8 = 0,346 Matemáticas Acceso a CFGS

  7. Ejemplo_2 Calificaciones de 100 alumnos de una clase en Matemáticas Variable continua. Tabla ampliada. • VARIANZA • ∑ fi .xi 2 • V = ------------- - x 2 = 28,30 – 4,72 • ∑ fi V = 6,21 • DESVIACIÓN TÍPICA • S = √V =√6,21 = 2,49 • DESVIACIÓN MEDIA • Dm = ∑ |xi-x| / ∑ fi = 216/100 = • = 2,16 • COEFICIENTE DE VARIACIÓN • CV = s / x = 2,49 / 4,7 = 0,53 Matemáticas Acceso a CFGS

  8. Ejemplo_3 Tamaño (en mm) de tornillos fabricados en una máquina. Muestra de 1000 tornillos. Variable continua. Tabla ampliada. Matemáticas Acceso a CFGS

  9. DESVIACIÓN MEDIA • ∑ |xi-x|. fi 85,1050 • Dm = -------------- = ------------ = 0,0851 • ∑ fi 1000 • RESOLUCIÓN EJEMPLO_3 • MEDIA • ∑ xi.fi 9998,10 • x = ---------- = ----------- = 9,9981 • ∑ fi 1000 • VARIANZA • ∑ xi2. fi 99973,54 • V = -------------- -- x2 = -------------- -- 9,99812 = 99,9735 – 99,9620 = 0,0115 • ∑ fi 1000 • DESVIACIÓN TÍPICA • S=√ 0,0115 = 0,1072  x – s = 9,8909 ,, x + s = 10,1053 • El 68% de los tornillos fabricados miden entre 9,89 y 10,10 mm • COEFICIENTE DE VARIACIÓN • CV = s / x = 0,1072 / 9,9981 = 0,01075  1,07 % Matemáticas Acceso a CFGS