1 / 26

Kommunikatsiooniteenuste arendus IRT0080

Kommunikatsiooniteenuste arendus IRT0080. Loeng 12, “ IP v6 + QoS” Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst. avo.ots@ttu.ee. IPv6. Redefine functions of IP (version 4) What changes should be made in…. IP addressing IP delivery semantics IP quality of service

halil
Download Presentation

Kommunikatsiooniteenuste arendus IRT0080

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kommunikatsiooniteenuste arendusIRT0080 Loeng 12, “ IP v6 + QoS”Avo Otstelekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.avo.ots@ttu.ee

  2. IPv6 • Redefine functions of IP (version 4) • What changes should be made in…. • IP addressing • IP delivery semantics • IP quality of service • IP security • IP routing • IP fragmentation • IP error detection

  3. IPv6 • Initial motivation:32-bit address space soon to be completely allocated (est. 2008) • Additional motivation: • Remove ancillary functionality • header format helps speed processing/forwarding • Add missing, but essential functionality • header changes to facilitate QoS • new “anycast” address: route to “best” of several replicated servers IPv6 datagram format: • fixed-length 40 byte header • no fragmentation allowed

  4. IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

  5. IPv6 Changes • Scale – addresses are 128bit • Header size? • Simplification • Removes infrequently used parts of header • 40 byte fixed header vs. 20+ byte variable header • IPv6 removes checksum • IPv4 checksum = provide extra protection on top of data-link layer and below transport layer • End-to-end principle • Is this necessary? • IPv6 answer =>No • Relies on upper layer protocols to provide integrity • Reduces processing time at each hop

  6. IPv6 Changes • IPv6 eliminates fragmentation • Requires path MTU discovery • ICMPv6: new version of ICMP • additional message types, e.g. “Packet Too Big” • multicast group management functions • Protocol field replaced by next header field • Unify support for protocol demultiplexing as well as option processing • Option processing • Options allowed, but only outside of header, indicated by “Next Header” field • Options header does not need to be processed by every router • Large performance improvement • Makes options practical/useful

  7. IPv6 Changes • TOS replaced with traffic class octet • Support QoS via DiffServ • FlowID field • Help soft state systems, accelerate flow classification • Maps well onto TCP connection or stream of UDP packets on host-port pair • Easy configuration • Provides auto-configuration using hardware MAC address • Additional requirements • Support for security • Support for mobility

  8. Transition From IPv4 To IPv6 • Not all routers can be upgraded simultaneous • no “flag days” • How will the network operate with mixed IPv4 and IPv6 routers? • Two proposed approaches: • Dual Stack: some routers with dual stack (v6, v4) can “translate” between formats • Tunneling: IPv6 carried as payload in an IPv4 datagram among IPv4 routers

  9. A B E F F E B A tunnel Logical view: IPv6 IPv6 IPv6 IPv6 Physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 Tunneling

  10. Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data D C F E B A F E B A Src:B Dest: E Src:B Dest: E Tunneling tunnel Logical view: IPv6 IPv6 IPv6 IPv6 Physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 A-to-B: IPv6 E-to-F: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4

  11. Dual Stack Approach • Dual-stack router translates b/w v4 and v6 • v4 addresses have special v6 equivalents • Issue: how to translate “FlowField” of v6 ?

  12. QoS • Pakettvõrkudes liikluse korralduse (traffic engineering) mõiste “garanteeritud teenuse kvaliteet” (QoS, Quality of Service) tähendab tõenäosuslikku hinnangut, et sidevõrk jälgib liikluslepet. • Paljudel juhtudel kasutatakse QoS tõenäosusena, et pakett läbib võrku saatjast vastuvõtjani oma ettemääratud ajavahemiku jooksul.

  13. Teenusekvaliteedi aspektid QoS – Quality of Service ITU-T E.800 Recommendation

  14. Teenusekvaliteedi aspektid (2) QoS Teenuse Kättesaadavus (Accessibility) Teenuse Püsivus (Retainability) Teenuse Terviklikus (Integrity) QoS parameetrid QoS parameetrid QoS parameetrid

  15. Teenusekvaliteedi aspektid (3) • Iga teenuse jaoks oma nõuded • QoS profiil • Erinevad teenusekvaliteedi tasemed vastavalt nõuetele

  16. Introduction • Coexistence of heterogeneous networks • Home networks, WLAN, 2G/3G, Campus-wide, satellite, … • The development of multimode handsets is a major challenge • Currently discussed standards fall short • Tomorrow user’s will expect the technology structure to “disappear” and be of no concern • Network architecture designed by IST project Daidalos • Provide seamless services accessible anytime anywhere across heterogeneous technologies • Enhanced Mobile IPv6 platform for mobility and QoS • Support for optimized mobility • Integration with QoS resource management

  17. Mobile Terminal Technologies IPv6++/MIPv6/Multicast Terminal Intelligence QoS User GUI FHO CARD IIS Handover QoSC MTC IAL QoSAL MBMS TD-CDMA WLAN WiMAX UDLR DVB-T

  18. Access Router / Access Point Technologies FHO CT D&M Terminal Intelligence IPv6++/MIPv6/ PIM Network Intelligence AM QoS CARD PA MM QoSM Handover QoSAL ENC MBMS TD-CDMA WLAN WiMAX UDLR DVB-T

  19. Handover • Mobile Initiated Handover • Network Initiated Handover • Triggered • At startup • Upon losing signal • Accounts for • user preferences • candidate APs load (QoS) • signal strengths • Triggered by • Overloaded AP (QoS) • losing signal • Accounts for • signal strengths of MTs • APs load (QoS)

  20. Wi-Fi Alliance Roadmap[Amer Hassan, Microsoft, jaanuar 2005] 802.11k 802.11j 802.11e 2004 2005 2006 Q1 Q2 Q3 Q4 Baseline Security QoS Applications 802.11h+d Extended EAP SimpleConfig WMM Scheduled Access WMM Power Save CE Phase1 Public Access Voice/Wi-Fi WCC CE Phase2

  21. QoS vajadus • QoS vajadus esmases tähenduses tuleneb video ja suure edastuskiirusega (mobiilsetest) andmesessioonidest • Lõplikult kavatsetakse realiseerida standardina IEEE 802.11n, vahevariant realiseeriti standardina IEEE 802.11e, mida toetab Proximi AP-4000.

  22. 802.11e • The 802.11e is a working group charged with making changes to the MAC layer to allow for QoS (Quality of service) in WLAN • Formally: “The purpose of Task Group E is to: Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol.” • The standard is in a late draft (draft 13 at this time) form and expected to be rectified this year. • Implements two main methods of QoS control • Extended DCF – also implemented as WMM • HCF – Hybrid Coordination function – uses PCF functions and only available as part of the final 802.11e spec

  23. 802.11e EDCF/WMM queues • WMM is an interim spec on the way to 802.11e implementing only eDCF • EDCF is based on using different contention parameters (CW) to differentiate queues • WMM has 4 priority levels and queues: • Audio/real time • Video • Best effort • Background • EDCF will support 8 priority levels but still 4 queues

  24. Roadmap – WLAN

  25. Link http://www.lr.ttu.ee/~avots/Introduction_to_IPv6.ppt

More Related