human molecular genetics n.
Skip this Video
Loading SlideShow in 5 Seconds..
Download Presentation

Loading in 2 Seconds...

play fullscreen
1 / 121


  • Uploaded on

HUMAN MOLECULAR GENETICS. N7-2006 L. Duroux Slides assembled from diverse sources. Recommended reading list - textbooks. Human Molecular Genetics 3 Strachan & Read Garland Publishing, ISBN 0-8153-4182-2 Principles of Medical Genetics Gelehrter, Collins & Ginsburg

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. HUMAN MOLECULAR GENETICS N7-2006 L. Duroux Slides assembled from diverse sources

    2. Recommended reading list - textbooks • Human Molecular Genetics 3 • Strachan & Read • Garland Publishing, ISBN 0-8153-4182-2 • Principles of Medical Genetics • Gelehrter, Collins & Ginsburg • Lippincott, Williams & Wilkins, ISBN 0683034456 • Genetics in Medicine • Nussbaum, McInnes & Willard • Elsevier, ISBN 0721602444

    3. Journals • Nature Genetics • • Nature Reviews Genetics • • Trends in Genetics •

    4. Lecture Plan • Examples of genetic diseases in Humans • Meiosis & Recombination • Mendelian Genetics • Modes of Heredity • Glossary and Standards

    5. 1. Genetic Diseases in Humans

    6. Role of Genes in Human Disease • Most diseases / phenotypes result from the interaction between genes and the environment • Some phenotypes are primarily genetically determined • Achondroplasia • Other phenotypes require genetic and environmental factors • Mental retardation in persons with PKU • Some phenotypes result primarily from the environment or chance • Lead poisoning

    7. Struck by lightning 100% Environmental Infection Weight Hair Colour Cancer Diabetes Height 100% Genetic Sex, Down syndrome, achondroplasia

    8. Medical genetics in the health service A Medical Genetics Unit Clinical Genetics Consultant Molecular Genetics Lab Cytogenetics Lab • Clinical diagnosis • Genetic counselling • Risk assessment • Prenatal & presymptomatic diagnosis

    9. Types of Genetic Disorders • Chromosomes and chromosome abnormalities • Single gene disorders • Polygenic Disorders • Mutation and human disease

    10. Chromosomal disorders • Addition or deletion of entire chromosomes or parts of chromosomes • Typically more than 1 gene involved • 1% of paediatric admissions and 2.5% of childhood deaths • Classic example is trisomy 21 - Down syndrome

    11. Down Syndrome KARYOTYPE

    12. Single gene disorders • Single mutant gene has a large effect on the patient • Transmitted in a Mendelian fashion • Autosomal dominant, autosomal recessive, X-linked, Y-linked • Osteogenesis imperfecta - autosomal dominant • Sickle cell anaemia - autosomal recessive • Haemophilia - X-linked

    13. Neonatal fractures typical of osteogenesis imperfecta, an autosomal dominant disease caused by rare mutations in the type I collagen genes COL1A1 and COL1A2 A famous carrier of haemophilia A, an X-linked disease caused by mutation in the factor VIII gene Sickle cell anaemia, an autosomal recessive disease caused by mutation in the b-globin gene

    14. Autosomal dominant pedigree

    15. Polygenic diseases • The most common yet still the least understood of human genetic diseases • Result from an interaction of multiple genes, each with a minor effect • The susceptibility alleles are common • Type I and type II diabetes, autism, osteoarthritis

    16. Polygenic disease pedigree

    17. 2. Meiosis & Genetic Recombination

    18. a b c DNA genes unreplicated pair of homologs Chromosomes & Genes • Are long stable DNA strands with many genes. • Occur in pairs in diploid organisms. • The two chromosomes in a pair are called “homologs” • Homologs usually contain the same genes, arranged in the same order • Homologs often have different alleles of specific genes that differ in part of their DNA sequence.

    19. The number of chromosomes per cell varies in different species From Griffiths et al. Introduction to Genetic Analysis W. H. Freeman 2000

    20. Chromosome Structure sister chromatids telomeres centromere unreplicated replicated chromosome chromosome Each chromatid consists of a very long strand of DNA. The DNA is roughly colinear with the chromosome but is highly structured around histones and other proteins which serve to condense its length and control the activity of genes. a a

    21. Key chromosomal regions Centromere A region within chromosomes that is required for proper segregation during meiosis and mitosis. Telomeres Specialized structures at chromosome ends that are important for chromosome stability.

    22. Two types of cell divisions Mitosis Goal is to produce two cells that are genetically identical to the parental cell. Meiosis Goal is to produce haploid gametes from a diploid parental cell. Gametes are genetically different from parent and each other.

    23. Homologs and Sisters Sister chromatids unreplicated replicated homologs homologs a

    24. Mitosis 4n 2n 2n In mitosis the homologs do not pair up. Rather they behave independently. Each resultant cell receives one copy of each homolog. a

    25. Meiosis I II 2n 4n 2n 1n In meiosis the products are haploid gametes so two divisions are necessary. Prior to the first division, the homologs pair up (synapse) and segregate from each other. In the second meiotic division sister chromatids segregate. Each cell receives a single chromatid from only one of the two homologs. a

    26. Meiosis/perfect linkage P L P L P L P L P L P L P L p l p l p l p l p l p l p l only parental-type gametes a a

    27. Meiosis w/recombination P L P L P l P L P L P l p l p l p L p L p l p l In some meiotic divisions these recombination events between the genes will occur resulting in recombinant gametes. a a

    28. Meiotic recombination in a grasshopper: Chiasma chiasma

    29. Mitosis vs Meiosis • One Division • Homologues do not pair • Centromeres divide • Each cell inherits both homologues • Mitosis is conservative producing daughter cells that are like parental cell. • Two Divisions • Homologues Pair up • In meiosis I, centromeres do not divide • Homologues segregate from each other. • Meiosis is not conservative, rather it promotes variation through segregation of chromosomes and recombination

    30. 3. Mendelian Genetics The laws of heridity

    31. While assigned to teach, he was also assigned to tend the gardens and grow vegetables for the monks to eat. Augustinian Monk at Brno Monastery in Austria (now Czech Republic) Gregor Mendel: “Father of Genetics” Not a great teacher but well trained in math, statistics, probability, physics, and interested in plants and heredity. Mountains with short, cool growing season meant pea (Pisum sativum) was an ideal crop plant.

    32. Contributions in 1860s (US Civil War Era) • Discovered Genes as Particles of Inheritance • Discovered Patterns of Inheritance • Discovered Genes Come from Both Parents • Egg + Sperm = Zygote • Nature vs Nurture • Sperm means Seed (Homunculus) • Discovered One Form of Gene (Allele) Dominant to Another • Discovered Recessive Allele Expressed in Absence of Dominant Allele

    33. Mendel worked with peas (Pisum sativum) • Good choice for environment of monastery • Network provided unusual varieties for testing • Obligate self-pollination reproductive system • Permits side-by-side genetic barriers • Cross-pollinations require intentional process • Crosses meticulously documented • Crosses numerically/statistically analyzed • Work lost in journals for 50 years! • Rediscovered in 1900s independently by 3 scientists • Recognized as landmark work!

    34. One Example of Mendel’s Work Dwarf Tall x Phenotype P dd Genotype DD Homozygous Dominant Homozygous Recessive All Tall Clearly Tall is Inherited… What happened to Dwarf? F1 Dd Tall is dominant to Dwarf Use D/d rather than T/t for symbolic logic Heterozygous F1 x F1 = F2 possible gametes Punnett Square: D d 3/4 Tall 1/4 Dwarf F2 D Tall DD Tall Dd possible gametes Dwarf is not missing…just masked as “recessive” in a diploid state… there IS a female contribution. d Tall Dd Dwarf dd

    35. Two fundamental laws derived from Mendel’s work 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

    36. After rediscovery of Mendel’s principles, an early task was to show that they were true for animalsAnd especially in humans

    37. Problems with doing human genetics:Can’t make controlled crosses!Long generation timeSmall number of offspring per crossSo, human genetics uses different methods

    38. Chief method used in human genetics is pedigree analysisI.e., the patterns of distribution of traits in kindreds

    39. Pedigrees give information on:Dominance or recessiveness of allelesRisks (probabilities) of having affected offspring

    40. Standard symbols used in pedigrees

    41. 4. Modes of Heredity

    42. Autosomal DominantFirst pedigree of this type:Farabee 1903Brachydactyly

    43. Autosomal DominantMost dominant traits of clinical significance are very rareSo, most matings that produce affected individuals are of the form:Aa x aa

    44. Autosomal Dominant Requirements for ideal auto. dom. pedigree: Every affected person must have at least 1 affected parent

    45. Autosomal Dominant Requirements for ideal auto. dom. pedigree: Both males and females are affected and capable of transmitting the trait

    46. Autosomal Dominant Requirements for ideal auto. dom. pedigree: No skipping of generations

    47. Autosomal Dominant Requirements for ideal auto. dom. pedigree: No alternation of sexes: we see father to son, father to daughter, mother to son, and mother to daughter

    48. Autosomal Dominant Requirements for ideal auto. dom. pedigree: In the usual mating, expect 1/2 affected, 1/2 unaffected

    49. Example: Achondroplasia • Short limbs, a normal-sized head and body, normal intelligence

    50. Caused by mutation in the FGFR3 gene • Fibroblast growth factor receptor 3 • Inhibits endochondral bone growth by inhibiting chondrocyte proliferation and differentiation • Mutation causes the receptor to signal even in absence of ligand