Motors & Motor Starters

1 / 32

# Motors & Motor Starters - PowerPoint PPT Presentation

Motors &amp; Motor Starters. Prepared By: Erik Redd &amp; Jeremy Roberts. Motors. AC-Motors Parts of an Electric Motor A. Stator : Stationary Frame B. Rotor : Revolving Part The rotary motion in an ac-motor is caused by the fundamental law of magnetism.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Motors & Motor Starters' - grant-good

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Motors & Motor Starters

Prepared By:

Erik Redd

&

Jeremy Roberts

Motors

AC-Motors

Parts of an Electric Motor

A. Stator : Stationary Frame

B. Rotor : Revolving Part

The rotary motion in an ac-motor is caused by the fundamental law of magnetism.

This law states that like poles repel and unlike poles attract.

Diagram of an ac-motor

This shows a three phase, two pole stator.

Where A, B, and C are the three phases

Diagram of the Three Phases

Fig. 13-2 Pg. 244

Poles 1 and 4 are at their greatest magnetic field at time equal to one, because phase A (red line) is connected to those poles, and the same for the other poles when their corresponding phases are at maximum current magnitude.

Synchronous Speed

Speed at which it takes the motor to go one cycle and one revolution.

S=[120*frequency}]

(# poles)

Example:

For a three-phase, 60 Hertz, 2 pole motor:

S=[120*60]/2=3600 revolutions per minute

Polyphase Squirrel-Cage Induction Motors
• The most common three-phase motor
• Does not have solid poles
• Instead, it has laminations: numerous flat sheets held together in a package. They are insulated from each other (this reduces Eddy currents) making up the stator
• The difference between induction and synchronous motors is that the rotor for an induction motor can travel at a different speed than the stator. This is called Slip.
• slip= Syn. rpm – Motor rpm *100 Syn. rpm
Example.

A 2 pole, 60 Hz motor runs at a full-load speed of 1760 rpm.

What is the slip?

Single-Phase Motors
• Supplied by single source of ac voltage
• Rotor must be spun by hand in either direction, does not have a starting mechanism
• Has no starting torque
• Three different types of single-phase motors: split-phase, capacitor start, permanent split-capacitor, and shaded-pole motors
Resistance Split-Phase Motors
• Has a start winding and a main winding
• Winding currents are out of phase by 30 degrees, this produces a flux field that starts the motor
• Main winding current (IM) and start winding current (IS) lags supply voltage (VL)
• Start (inrush) current is high
• Needs centrifugal starting switch or relay to disconnect the start winding (protects it from over heating)
• Efficiency is between 50-60%
Capacitor-Start Motors
• Has the same winding and switch mechanism arrangement as split-phase but adds a short time-rated capacitor in series with the start winding
• The time shift phase between the main and start winding is close to 90 degrees
• Efficiency is between 50-65%
• Capacitor controls the inrush current
Permanent Split-Capacitor Motors
• Winding arrangement is the same as the capacitor and split-phase motors
• Capacitor can run continuously, rated in microfarads for high-voltage ratings
• No centrifugal switch is needed
• IM lags VL, while IS leads VL
• Efficiency is between 50-70%
• Simple construction, least expensive
• Has a run winding only, shading coils are used instead of the start winding
• Stator is made up of a salient pole, one large coil per pole, wound directly in a single large slot
• A small shift in the rotor causes torque and starts the motor
• Efficiency is between 20-40%
DC Motors
• Consists of an armature winding and a stator winding
• Armature windings act as the rotor
• Has three different classifications: constant torque, constant horsepower, or a combination of the two
• Standard industrial dc motors are shunt wounded
• Modifications of the dc motor are: shunt wound, stabilized shunt exciting fields, compound wound motors, and series wound motors
Armature Voltage Control
• Is used for motor speeds below base speed
• Output torque= T=k*ø*IA

k is machine constant

ø is the main pole flux

IA is the armature current

Shunt Field Control
• Is used for motor speeds above base speed
• Horsepower, (HP)= Torque*rpm

5252

Where torque is in lb-ft

Speed Regulation

Brushless DC Motors
• Three phase ac power is converted into dc by the input side of the motor to charge up a bank of storage capacitors
• These capacitors are called the Buss
• The purpose of the buss is to store energy and supply dc power to transistors in the output side as the motor requires the power to start up
Brushless DC Motors
• Figure 13-21, page 264 shows the input power section
• It consists of three fuses, six diodes, a choke, and two capacitors
• The fuses protect the diodes
• The choke protects against line transients
• The motor control may run at very low speeds at very high torques while drawing little current from the ac line
Brushless DC Motors
• This picture is a representation of the encoders (rotor part of the motor) telling the corresponding transistors (stator) to turn on in order to get maximum torque from the motor
Motor Control Starters
• Motor will draw high inrush current while the starter will slow current down
• Starter reduces the amount of torque needed to start the motor
Magnetic Motor Starter
• Normally open contacts
• Not always possible to control amount of work applied to the motor
• Motor may be overloaded resulting in damage to the motor
• Open due to excessive motor current, high temperature, or a combination of both
Full-Voltage Starter
• Contains one set of contacts
• Motor is directly connected to the line voltage
Reversing Motor Starter
• Contains two starters of equal size
• Two starters connect to the motor
• Interlocks are used to prevent both starters from closing their line contacts at the same time
• Figure 14-4A
Reduced-voltage Motor Starter
• Applies a percentage of the total voltage to start (50% - 80%)
• After motor rotates, switching is provided to apply full voltage
• Torque will be reduced when starting
• Four types:

1) Autotransformer

2) Primary Resistance

3) Wye – Delta

4) Part Winding

Autotransformer Starter
• Two contactors are used:

1) Start contactor

- Closes first and connects motor to the line

through an autotransformer

- Deenergizes

2) Run contactor

- Motor switches to this contacter which has

full voltage

Primary Resistor Starter
• Two contactor

1) Line contactor

- First to energize connecting motor to the

line voltage through a resistor

- After preset time, contactor opens

2) Accelerating contactor

- Energizes

- Causes smooth acceleration to full voltage

Wye – Delta Starter
• Three contactors are used

1) Line contactor and start contactor

- Energizes first and connects motor in wye

putting about 58% of line voltage across

each motor phase

- Contacts open after preset time

2) Run contactor

- Energizes connecting motor in delta and

putting full voltage on the motor

Part Winding Starter
• Starter supplies about 48% of normal starting torque
• Not truly a reduced-voltage means
• Two Types

1) Two-Step - one winding connected to

full voltage line and, after a preset time,

the other connects

2) Three-Step – one winding is connected in series

with a resistor to the voltage line; after interval, resistor

is shorted out and then second line is connected to

full voltage line

Solid-State Motor Starter
• For lower starting torque and smooth acceleration
• Used on conveyors, pumps, compressors, etc.
Standard Modes of Operation
• Motor voltage gradually increases during acceleration
• Creates a kick start pulse of 500% of full load amperage for high friction
• Used when necessary to limit current
• Used when motor requires a full voltage start