Chapter 10 – Isoparametric Formulation

1 / 44

# Chapter 10 – Isoparametric Formulation - PowerPoint PPT Presentation

Chapter 10 – Isoparametric Formulation. Isoparametric formulation is used for: 2-D non-rectangular quadrilateral elements (4 & 8 node) 3-D non-rectangular hexahedral (brick) elements (8 & 20 node) Commonly used in commerical codes Convenient for use with numerical integration

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## Chapter 10 – Isoparametric Formulation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Chapter 10 – Isoparametric Formulation

Isoparametric formulation is used for:

• 2-D non-rectangular quadrilateral elements (4 & 8 node)
• 3-D non-rectangular hexahedral (brick) elements (8 & 20 node)

Commonly used in commerical codes

Convenient for use with numerical integration

Can be used with linear and higher order displacement interpolation functions

The term “Isoparametric”

“iso” – same

“parametric” – parameters

Isoparametric – “same parameters” are used to describe the displacement interpolation and the coordinate transformation

Coordinate Transformation

Global coordinate system

Natural coordinate system

Isoparametric Formulation applied to a Bar Element

Global Coordinate – x

Natural Coordinate - s

Bar Element Coordinate Transformation (cont.)

Recall bar element displacement interpolation functions:

Note: Same functions

Element Stiffness Matrix

where

determinant of the Jacobian

Chapter 10 – Isoparametric Formulation(cont.)

Today’s topics:

• Evaluation of Stiffness Matrix using Gaussian Quadrature
• Evaluation of Element Stresses
• Higher order shape functions
Rectangular Plane Stress Element(cont.)

Assumed displacement interpolation – bilinear

In terms of nodal displacements

Rectangular Plane Stress Element(cont.)

Displacement interpolation (matrix form)

where

Rectangular Plane Stress Element(cont.)

Strain-displacement relation

Matrix form

Note: linear dependence on x & y

Rectangular Plane Stress Element(cont.)

Element stiffness matrix

Element force matrix

Element equations

Isoparametric Coordinate Transformation

Natural coordinate system

Global coordinate system

Isoparametric Coordinate Transformation (cont.)

Coordinate transformation functions (same as displacment interpolation)

Matrix form

Isoparametric Element

Element stiffness matrix

In terms of isoparametric coordinates

Need B(s,t) and determinant of Jacobian

Isoparametric Element (cont.)

Determinant of Jacobian (see text for details)

Nodal coordinates

Isoparametric Element (cont.)

Evaluation of [k]:

Requires numerical integration to evaluate double integral of the form:

x

Consider single integral of the form:

Weight factor, W1= 2

x1= 0 is the sampling point

Approximate the integral by sampling the function at one point (n=1):

Note: result is exact if y(x) is a first order polynomial

Note: result is exact if y(x) is a third order polynomial

Note: result is exact if y(x) is a fifth order polynomial

Example

Exact solution:

Double Integral - Example

Exact solution:

2.6613

t

1

3

4

x

x

s

1

-1

1

2

x

x

-1

Evaluation of Stiffness Matrix (cont.)

For 4 node quad – 2 x 2 Full Integration

(Reduced Integration 1x1)

Gauss points or integration points

See text Example 10.4 for detailed example

3 x 8

8 x 1

3 x 3

3 x 1

Evaluation of Element Stresses
• Options for computing stresses:
• 1) Compute stresses at centroid (s = t = 0)
• 2) Compute stresses at integration points
• Extrapolate stress values to the nodes
• No stress-averaging – plot color contours for each element
• With stress-averaging – average stresses from adjacent elements at each node then plot color contours
Higher order shape functions

2 x 16

2 x 1

16 x 1

8 Node Isoparametric Quad Element (cont.)

Displacement interpolation:

=

3 x 16

3 x 3

16 x 3

16 x 16

3 x 3 Gaussian Quadrature – Full Integration

(2 x 2 – Reduced Integration)

Element Stiffness Matrix