1 / 55

RFFO TT Beszámoló

RFFO TT Beszámoló. 2009. Április 27. In memoriam. prof. J Ó ZSEF ZIM Á NYI. Who is the main responsible for it that we can be here. VOX POPULI. From Gabor.Facsko@cnrs-orleans.fr Wed Mar 18 15:39:59 2009 Date: Wed, 18 Mar 2009 12:02:00 +0100

gerard
Download Presentation

RFFO TT Beszámoló

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RFFO TT Beszámoló 2009. Április 27.

  2. In memoriam prof. JÓZSEF ZIMÁNYI Who is the main responsible for it that we can be here

  3. VOX POPULI From Gabor.Facsko@cnrs-orleans.fr Wed Mar 18 15:39:59 2009 Date: Wed, 18 Mar 2009 12:02:00 +0100 Cc: RMKI-s kollegak <rmkiusers@lists.kfki.hu> Subject: Re: [Rmkiusers] RMKI logo (fwd) Tisztelt ex-Kollegak! Imhol egy masik jo pelda: szerepel rajta az intezet nevenek roviditese, tovabba egy jellemzo kep is a hatterben. (A bal oldali mezo a logo, azt hasznaljuk posztereken.) Esetleg el kellene gondolkodni az RMKI profiljan es egy esetleges nevcseren is. Ki foglalkozik meg reszecske es magfizikaval? Paranbiztosan, de en ugy latom, hogy a fuzios plazamafizika, a szilardtestfizika, az altalanos relativitaselmelet, az urfizikia es a biofizika a legintenzivebben kutatott teruletek az intezeten belul. Udvozlettel (es a kivulallo nyugalmaval): Facsko Gabor -- Dr. Gabor FACSKO, PhD gfacsko@cnrs-orleans.fr CAA Research Associate http://lpce.cnrs-orleans.fr/~gfacsko/

  4. Motivations for CERN membership in 1991 and NOW(?) Scientific Political Economical Cultural Education Technology What is the correct order???? There is no unique answer. Mixed arguments.

  5. ALICE aTeV-ekországában ALICE a TEVÉK országában

  6. Belépés a Csodák Palotájába Sezám tárulj!! ALICE in WONDERLAND

  7. Kérdés: Tevék országában vagyunk-e? Tudományos sivatag Financiális sivatag Társadalmi közöny, érdektelenség sivataga PAST TRIUMPHS

  8. Planck length : Today’s Limit … The highway across the desert GUTs Super partners

  9. PREHISTORY Starting points in the 50’s: a) Hungarian “MANHATTAN-Project” KFKI (1950) and ATOMKI (1954) b) Experimental Cosmic Ray Physics Research reactor, MeV accelerators, nuclear electronics and detectors Beginning of HEP in the 60’s: JINR-Dubna membership: HU was providing personel and instrumentation Most active period 1969-1973 Serpuhov 70 GeV accelerator Hungarian colony in Dubna includes more than 50 scientists and engineers First contacts to CERN a) CERN-Dubna agreement (1964) Some people of Dubna staff can visit CERN b) HAS-CERN : “scientific visitor” agreement (1970) 1-2 year fellowship for theorists and experimentalists alternatively

  10. LEP-L3 the first Hungarian CERN experiment By special grant of HAS a Hungarian team as official BUDAPEST group from the beginning became the member of the L3 experiment The grant was just enough to cover the obligatory yearly “running cost”, but no resource for construction. Minor hardware contribution was achieved to the SMD Si-detector monitor system. Main contribution: core-software development, data processing, physical analysis In 1995 the group was reorganized to concentrate for gamma-gamma analysis. Due to the complexity of the analysis software, effective work was only possible during the short 1-2 months visiting periods of the Hungarian team members to CERN. The home computer base was under-developped to install the necessary program packages. In 1999 the ATOMKI-Debrecen University team also became an official member.

  11. What did we learned from L3? By the contemporary Hungarian standards the team got relatively large financial support, but the real sum turned out to be marginal compared to western levels of funding. Most of the team members had no real direct affiliation to any subdetector, they were drifting around according to occasional short-term grants. E.g. the key person of the gamma-gamma project left for OPAL continuing his successful carrier there. Thus we reached only 1 complete PhD and 2 “half” ones. Trivial conclusion: We missed the critical mass BUT! There is no universal way to the success. Let us try some variants!!!

  12. A VÁKUUM ANYAGA A természetes rádióaktivitás felfedezése óta nem fedeztünk fel semmiféle új anyagfajtát a He atommag kvarkokból - sugárzás: b - sugárzás: Elektron nyaláb g - sugárzás: Foton nyaláb HIGGS-BOZON tölti ki az egész teret Ha nem lenne Higgs, akkor nem lenne tömeg

  13. Az Univerzum leghidegebb es legmelegebb pontja Világűr 2.73 K LHC 1.9 K 27km*.5m2=15 ezer m3 DIPOLMAGNES 1250 db r = 7 fm d = r/3100 4 Peta eV/ fm3 200*3100= 620,000 TeV 200*3100= 620,000 TeV 1 200 TeV / 7*7 p * 7/3100= 0,3 fm3

  14. SUPER SYMMETRY

  15. Three CASE STORIES for CRITICAL MASS experiments

  16. VISIBILITY in a BIG EXPERIMENT (CMS) Small country vs Big-science Early start: founding father already in RD5. Large contribution to smaller sub-detector  Very Forward Calorimetry Challenge: same number of particle as in barrel, prompt signal, rad.hard Parallele-Plate-Chamber vs Quartz-fibre calorimetry Partners: USA, Russia,Turkey Prototyping 2 times 15 kCHF Production: fibre stuffing MULTI-GROUP approach: second hardware group for Muon Alignement Physics subgroups: see F. Sikler and D Horvath talks

  17. TECHNOLOGY for a BIG EXPERIMENT (ALICE) High-speed data transfer (RD3) project + a talented engineer: S-LINK DDL-project for ALICE Concept, protocol, design, prototype G. Rubin’s team Production in Hungary Tecnhology transfer: FPGA design technology, rad.hard electronics Spin-off company supported by Hungarian R&D funds Physics see in Levai’s talk

  18. ALICE DAQ Az ALICE adatgyűjtő rendszere DDL

  19. ALICE Detector Data Link

  20. Detector Data Link (DDL) • Detector readout: fast data transfer to PC memory • Electronics configuration: pedestals download • Interface and data-transfer detector/DAQ

  21. D-RORC

  22. References • High-speed optical links produced in Hungary work at data acquisition systems at: • CERN ● INFN (Roma ● Torino ● Bologna ● Napoli ● Pisa) IPN (Orsay, Nantes) ● CEA (Paris) ● NIKHEF (Amsterdam) Max-Planck Institute (München) ● KFKI-RMKI (Budapest) Stockholm University ● IFAE (Univ. of Barcelona) ● Univ. of Valencia Univ. of Lausanne ● TU München ● Bärgische Univ. Wuppertal • Johannes Gutenberg Universität ● Mancester University Univ. of Chicago ● Indiana University ● Caltech (Los Angeles) ● Argonne Nat. Lab. (Chicago) ● Los Alamos Nat. Lab. Fermilab (Batavia) ● Brookhaven Nat. Lab. (New Yersey) IRAM (an observatory in the Pirennes) a space telescope in Hawaii ● etc.

  23. Critical mass in a “small” experiment (NA49) • 3 components of an explosive mixture: • - Experienced hardware team from nuclear physics environment • - Continuous influx of talented students • - Committed theory support group Actions: -- GRID-TOF stand-alone Hungarian subdetector Original design, production, installation, on-line DAQ, off-line software,analysis -- Specific RESEARCH AIMS: concentrate on pp/pA physics Motto: AA can be understood only relative to simpler systems -- In house EDUCATION CENTRE (thanks to H.G.Fischer) Every year 2 new students with a new hardware piece is added: centrality detector, (new/old) n-detector, veto-chambers, GAP TPC, np-trigger, Leadglass.. Reasonable HOME FUNDING in average 30 kCHF/year Highlights: see next slides

  24. Artist’s view of NA49 GRID-TOF (Budawall)

  25. 1994 GRID-TOF REFORM dE/dX V-zero n-det Centrality det n-Veto Gap-TPC 2000

  26. AA pA pp Target combinations

  27. Unique tool to identify centrality in pA

  28. First step: RING-calorimeter is a good neutron detector, but no tracking at 0 degree Second step: Build cheap, simple and robust veto chambers

  29. Before After

  30. NA61

  31. The CRITICAL POINT’s puzzle is well characterized by the letter of leading theorists to the SPSLC Committee which was the highest scientific decision body of CERN at that time:

  32. Zoltán FODOR(ELTE) Water analogy for QGP phase transition

  33. STRATEGY DOCUMENT 14 July 2006, Lisbon 9 Strong interactions and the interface of particle and nuclear physics A variety of important research lines are at the interface between particle and nuclear physics requiring dedicated experiments; Council will seek to work with NuPECC in areas of mutual interest, and maintain the capability to perform fixed target experiments at CERN. QCD plays a multiple role in particle physics. On one side QCD is one of the cornerstones of the SM, and in spite of its phenomenological successes more work is necessary to fully establish its quantitative predictions in the long-distance and strongly interacting regimes. On the other side, QCD is a crucial tool for the measurement of the electroweak parameters of the SM (e.g. the quark masses and mixings) as well as to search for BSM phenomena, both at low energies (e.g. in the decays of K or B mesons) and at high energies, where the production of new heavy particles may be hidden by large QCD backgrounds, and often manifests itself in the form of multijet signatures. Finally, QCD leads to new states of matter, when temperature and densities exceed the values beyond which quarks and gluons are confined inside hadrons. Progress in the field of strong interactions, guaranteed by a diversified programme of national or regional facilities operating at different energies and with different beams, plays an important role in the future of particle physics. In parallel, a fixed-target programme, to specifically address the problem of identifying a QCD critical point by improving and diversifying the available data, could be important. The ability to carry out fixed-target experiments at CERN with heavy ions beams should be preserved.

  34. HIGH ENERGY EXPERIMENTS ATCERN GREY BOOK NA61 Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

  35. From this table one should notice the fact that in the huge CERN Laboratory exists only 12 officially acknowledged high energy physics experiments. There is 6 planned experiments at LHC: ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM and an other 6 registered experiments at SPS: CNGS1(OPERA), CNGS2(ICARUS), NA58(COMPASS), NA61(SHINE), NA62, NA63. Hungary has relative large groups in CMS and ALICE, but they represent only a small minority amongst the few thousand participants. In the small SHINE/NA61 experiment already 10 people represent a strong contingent, but our role even more significantbecause this is the only experiment in CERN where Hungarians are occupying leading positions: G Vesztergombi together with M. Gazdzidki are the spokespersons, responsible separately for the proton- and heavy ion physics, respectively. Beyond these administrative posts it is more important that the position of RUN coordination is also in Hungarian hand. Z. Fodor (RMKI) is the Technical Coordinator, who is the commander of the real experimental work on the floor, knowing all the technical and scientific details.

More Related