1 / 42

The PANDA Experiment at FAIR

The PANDA Experiment at FAIR. Marco Destefanis Università degli Studi di Torino. for the PANDA Collaboration. Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013. Overview. Physics topics @ PANDA Form Factors Drell-Yan process and background Hypernuclei

gaye
Download Presentation

The PANDA Experiment at FAIR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The PANDA Experiment at FAIR Marco DestefanisUniversità degli Studi di Torino for the PANDA Collaboration Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013

  2. Overview • Physics topics @ PANDA • Form Factors • Drell-Yan process and background • Hypernuclei • PANDA spectrometer • Summary

  3. Future GSI andFacility for Antiproton and Ion Research • Primary beams: • Proton • Heavy Ions • Factor 100-1000 over present in intensity • Secondary Beams: • Radioactive beams • Antiprotons 3 - 30 GeV • 1-2 107 /s • Storage and Cooler Rings: • Radioactive beams • e – A collider • 1011 stored and cooled • 0.8 - 14.5 GeV antiprotons

  4. High Energy Storage Ring HESR 1011 stored and cooled 0.8-15 GeV/c antiprotons Characteristics Pmax = 15 GeV/c Lmax = 2·1032 cm-2 s-1 Ø < 100 m p/p < 10-5 internal target Cooling: electron/stochastic High res. mode: L = 1031 cm-2 s-1p/p < 10-5 High lum. mode: L = 2·1032 cm-2 s-1 p/p < 10-4

  5. Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation

  6. The PANDA Physics • Confinement • Why are there no free quarks? • • Hadron mass • Where is the mass • of the proton coming from? • • Are there other color • neutral objects? • • What is the structure of • the nucleon? • • What are the spin degrees • of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011

  7. The PANDA Physics • Meson spectroscopy*: • D mesons • charmonium • glueballs, hybrids, • tetraquarks, molecules • Charmed and multi-strange • baryon spectroscopy* • Electromagnetic processes • (FF, pp→e+e-, pp→gg, Drell-Yan) • Properties of single and • double hypernuclei • Properties of hadrons in • nuclear matter * Presented by V. Mochalov

  8. ppbar Cross Section

  9. ppbar Cross Section–Exclusive Final States

  10. The PANDA Potential • All JPC allowed for qq are accessible in pp Formation • JPC not allowed for qq possible Production T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal)

  11. Meson Spectroscopy

  12. The New XYZ States

  13. Discovery of Zc±(3900)

  14. QCD Dynamics The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. In PANDA pp  ΛΛ, ΛΞ, ΛΞ, ΞΞ , ΣΣ, ΩΩ, ΛcΛc, ΣcΣc, ΩcΩc can be produced allowing the study of the dependences on spin observables. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested

  15. p+pbar -> e+e- events generation L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days • Generator: • |GM| = 22.5 (1 + q2 / 0.71)-2 (1 + q2 / 3.6)-1 •  = |GE|/|GM| • lowersensitivity • @ higher q2 M. Sudol et al., EPJ A44 (2010) 373 E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291

  16. PANDA Scenario: Expected Results L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 PS170: G. Bardin et al., NPB 411 (1994) 3 pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) 045501 R=|GE|/|GM| BaBAR PS170 Individual determination of |GE| and |GM| up to q2 14 (GeV/c)2 !! PANDA sim M. Sudol et al., EPJ A44 (2010) 373

  17. PANDA Scenario: Expected Results L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Absolute  accessible up to q2 28 (GeV/c)2 M. Sudol et al., EPJ A44 (2010) 373

  18. PANDA Scenario: Asymptotic Behaviours L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindelöf theorem: E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, 15 - 19 Jun 2009, pp.447, arXiv:0907.4442v1 [nucl-th]

  19. TMD: KT-dependent Parton Distributions Twist-2 PDFs Transversity Sivers Boer-Mulders

  20. TMD PDF Investigation • Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram • Energies @ FAIR unique energy range up to s~30 GeV2 with PANDA up to s~200 GeV2 with PAX @ much higher energies → big contribution from sea-quarks

  21. Drell-Yan Process • Drell-Yan: pp -> +-X Kinematics x1,2 = mom fraction of parton1,2  = x1• x2 = M2/s xF = x1 - x2 Collins-Soper frame Collins-Soper frame: Phys. Rev. D16(1977) 2219.

  22. UNPOLARISED Drell-Yan Cross Section SINGLE-POLARISED . U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, 3357-3372 (1995)

  23. CERN NA51 450 GeV/c Fermilab E866 800 GeV/c Di-Lepton Production pp-> l+l-X R.S. Towell et al., Phys. Rev. D 64, 052002 (2001) A. Baldit et al., Phys. Lett. 332-B, 244 (1994)

  24. Phase space for Drell-Yan processes x1,2 = mom fraction of parton1,2  = x1• x2 xF = x1 - x2  = const: hyperbolae xF = const: diagonal PANDA 1.5 GeV/c2 ≤ M ≤ 2.5 GeV/c2 PAX @HESR symmetric HESR collider 1

  25. Drell-Yan Process and Background • Drell-Yan: pp -> +-X cross section   1 nb @ s = 30 GeV2 • Background: pp -> +-X, 2+2-X,…… cross section   20-30 b m = 105 MeV/c2; m 145 MeV/c2 average primary pion pairs:  1.5 • Background studies: needed rejection factor of 107

  26. 1 < qT < 2 GeV/c 2 < qT < 3 GeV/c DY Asymmetries @ Vertex UNPOLARISED SINGLE-POLARISED xP xP xP xP 500KEv included in asymmetries Acceptance corrections crucial! xP Physics Performance Report for PANDA arXiv:0903.3905 xP

  27. ) ) xP DY Asymmetries @ Vertex Statistical errors for 500KEv generated xP R = L·σ·ɛ = 2·1032cm-2s-1 × x 0.8·10-33cm2× 0.33 = 0.05 s-1~ 130 Kev/month xP Physics Performance Report for PANDA arXiv:0903.3905

  28. n p X- p n n L p p L n e- n p p n X- Double Strange Systems 3 different systems contain double strangeness (S = -2) Exotic hyperatom: Interactions: X--nucleus: interplay between the Coulomb and nuclear potential From hyperatom to X-hypernucleus: X- absorption Doubly strange hypernucleus: Interactions: X-N From X-hypernucleus to LLhypernucleus: after X-NLL Double hypernucleus: Interactions: L-L STORI’11 - F. Iazzi Politecnico di Torino&INFN

  29. e- n p p n X- Which Physics with Hyperatoms? • Stopped X- are capturedintoatomic (high) levels • X-undergoes an hyperatomiccascade • X-rays are emitted in the range 0÷1.2 MeV (12C) • Absorption from an atomic level into nucleus ends the atomic cascade • Bohr radius in lowest levels(n=2,3): ≈ 15 – 25 [fm] X-: M = 1.32132 [GeV/c2]; t = 16.39.10-11 [s];S = -2 in the region close to the nucleus: • Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them • shift and width can be measured (only last level ) X-ray spectroscopy (from X-) in the range: ≈ 0.1 – 1 [MeV] No existing data! STORI’11 - F. Iazzi Politecnico di Torino&INFN

  30. Which Physics with ΛΛHypernuclei? Formed by X- p ΛΛ reaction inside nucleus • Physics (I):ΛΛ strong interaction (only possible in double hypernuclei) • Quarks: s-s interaction • YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛΛΛ : only nonstrange, I =0 meson exchange (w,h...) • hyperfragments distribution: dependence on YY potential • Physics (II):ΛΛ weak interaction (only possible in double hypernuclei) • Non Mesonic Hyperon Induced Decay: • ΛΛ Λ n : (expected ΓΛn << Γfree ) (pΛ/N = 433 MeV/c) • ΛΛ Σ-p : (expected ΓΣp << Γfree ) (pΣ/N = 321 MeV/c) B.E. • Measurements • Strong interaction: • DBΛΛ(AZΛΛ) = BΛΛ(AZΛΛ ) - 2BΛ(A-1ZΛ) (from g spectroscopy) • Weak interaction: • momentum of p from L decay • momentum of p from LL S –p • momentum of p– from L ,S-decay DBLL A STORI’11 - F. Iazzi Politecnico di Torino&INFN Several A data  core of ΛΛ interaction n L p L p n

  31. The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905

  32. The PANDA Detector STT Detectors • Detector requirements: • nearly 4 solid angle (partial wave analysis) • high rate capability (2·107 annihilations/s) • good PID (, e, m, p, K, p) • momentum resolution (~1%) • vertex info for D, K0S, L (cτ =123 mm for D0, p/m ≈ 2) • efficient trigger (e, m, K, D, L) • no hardware trigger (raw data rate ~ TB/s) Physics Performance Report for PANDA arXiv:0903.3905

  33. The Micro-Vertex Detector FAIRNESS2012, L. Zotti

  34. The Micro-Vertex Detector FAIRNESS2012, L. Zotti

  35. Tracking Detectors I. Lehmann, Spin-Praha 2012

  36. Cherenkov Detectors I. Lehmann, Spin-Praha 2012

  37. Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012

  38. Muon Detector System Iarocci Tubes working in proportional mode Ar+CO2 gas mixture Prototype ready FE electronics in production JINR - Dubna TDR for the PANDA Muon System, 2nd Draft (May 2011) MDT cross section MDT layout

  39. Range System Prototype JINR - Dubna Muon Detector Layout

  40. EMC MVD DIRC Particle Identification • PANDA PID Requirements: • particle identification essential for PANDA • momentum range 200 MeV/c – 10 GeV/c • Extreme high rates 2·107 Hz • good particle separation (K-e) • different detectors needed for PID STT Physics Performance Report for PANDA arXiv:0903.3905

  41. PANDA Phyisics Performance Report All the details of the PANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv:0903.3905v1

  42. Summary • PANDA physics program • unique program accessible with antiproton beams • addresses key questions • high discovery potential • high statistics and high precision results • Beginning in 2018

More Related