lecture 5 introduction to physics phy101
Download
Skip this Video
Download Presentation
Lecture 5 : Introduction to Physics PHY101

Loading in 2 Seconds...

play fullscreen
1 / 13

Lecture 5 : Introduction to Physics PHY101 - PowerPoint PPT Presentation


  • 166 Views
  • Uploaded on

Lecture 5 : Introduction to Physics PHY101. Chapter 2: Equations of Kinematics for Constant Acceleration in 1 Dim. (2.4, 2.5, 2.7) Free Fall (2.6) Chapter 3: Equations of Kinematics for Constant Acceleration in 2 Dim. (3.1, 3.2). Summary of concepts from last lecture.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Lecture 5 : Introduction to Physics PHY101' - ganya


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
lecture 5 introduction to physics phy101
Lecture 5: Introduction to PhysicsPHY101

Chapter 2:

  • Equations of Kinematics for Constant

Acceleration in 1 Dim. (2.4, 2.5, 2.7)

  • Free Fall (2.6)

Chapter 3:

  • Equations of Kinematics for Constant

Acceleration in 2 Dim. (3.1, 3.2)

summary of concepts from last lecture
Summary of concepts from last lecture
  • position: your coordinates (just “x” in 1-D)
  • displacement: x = change of position
  • velocity: rate of change of position
    • average : x/t
    • instantaneous: slope of x vs. t : lim t->0x/t
  • acceleration: rate of change of velocity
    • average: v/t
    • instantaneous: slope of v vs. t : lim t->0v/t
concept question
v

+x

a

 correct

v

+x

 correct

a

Concept Question
  • A car is moving along the negative x direction. During part of the trip, the speed increases from 16 to 28 m/s in 1.5 s. Which of the following is correct?

1) v>0, a>0

2) v>0, a<0

3) v<0, a>0

4) v<0, a<0

  • During another part of the trip, the speed decreases from 48 to 26 m/s in 11 s. Which of the following is correct?
    • 1) v>0, a>0
    • 2) v>0, a<0
    • 3) v<0, a>0
    • 4) v<0, a<0

If speed is increasing, v and a are in same direction.

If speed is decreasing, v and a are in opposite direction.

slide4
correct

Concept Question

Which of the following statements is most nearly correct?

1 - A car travels around a circular track with constant velocity.

2 - A car travels around a circular track with constant speed.

3- Both statements are equally correct.

On a circular track, the direction that the car is traveling in is always changing, and since velocity takes into account the direction of travel, the velocity is always changing. Speed, however, is independent of direction and so the speed can stay constant.

kinematics in one dimension constant acceleration
Kinematics in One DimensionConstant Acceleration

Consider an object which moves from the initial position x0, at time t0

with velocity v0, with constant acceleration along a straight line.

How does displacement and velocity of this object change with time ?

aav=a = (v-v0) / (t-t0) => v(t) = v0 + a (t-t0) (1)

vav = (x-x0) / (t-t0) = (v+v0)/2 => x = x0 + (t-t0) (v+v0)/2 (2)

Use Eq. (1) to replace v in Eq.(2):

x(t) = x0 + (t-t0) v0 + a/2 (t-t0) 2 (3)

Use Eq. (1) to replace (t-t0) in Eq.(2):

v2 = v02 + 2 a (x-x0 ) (4)

application of eqs of kinematics
Application of Eqs. of Kinematics
  • A runner accelerates to a velocity of 5.36 m/s due west in 3.00 s. His average velocity is 0.640 m/s2 due west. What was his velocity when he began accelerating ?

[Chapter 2, problem #15]

t0= 0 s, v= -5.36 m/s, t=3.00 s, aav=-0.640 m/s2

v0 = ? m/s

aav = (v-v0)/(t-t0) => v0= v- aav (t-t0) = -3.44 m/s

v0 = 3.44 m/s due west

application of eqs of kinematics7
Application of Eqs. of Kinematics
  • A drag racer starting from rest, speeds up for 402 m with a=+17 m/s2. A parachute then opens, slowing the car down with a=-6.10 m/s2. How fast is the racer after moving 3.50 x 102 m after the parachute opens ? [2-28]

1. Before the parachute opens (car moves +x direction):

t0= 0 s, v01 = 0 m/s, x1=+402 m, a1=+17 m/s2

2. After the parachute opens:

t0= 0 s, x2=+3.50 x 102 m, a2=-6.10 m/s2, v=? m/s

v2=v022+2 a2 x2 Get v022 from 1.: v02=(2 a1 x1 )1/2=+117 m/s

=> v2=(v02+2 a 2 x2)1/2=+96.9 m/s

free fall
Free Fall
  • Free fall is the idealized description of the motion of a downward falling body due to gravity:
  • Air resistance is neglected
  • Acceleration due to gravity is considered to be constant

The acceleration due to gravity is always pointing

downward with magnitude g=9.80 m/s2.

concept question9
Correct x = 1/2at2

Correct v=at

Concept Question

An object is dropped from rest. If it falls a distance D in time t then how far will it fall in a time 2t ?

1. D/42. D/23. D4. 2D5. 4D

Followup question: If the object has speed v at time t then what is the speed at time 2t ?

1. v/42. v/23. v4. 2v5. 4v

concept question10
correctConcept Question

A ball is thrown vertically upward. At the very top of its trajectory, which of the following statements is true:

1. velocity is zero and acceleration is zero2. velocity is not zero and acceleration is zero3. velocity is zero and acceleration is not zero4. velocity is not zero and acceleration is not zero

The velocity vector changes from moment to moment, buts its acceleration vector does not change. Though the velocity at the top is zero, the acceleration is still constant because the velocity is changing.

free fall11
Free Fall
  • A wrecking ball is hanging from rest from a crane when suddenly the cable breaks. The time it takes the ball to fly half way to the ground is 1.2 s. Find the time for the ball to fall from rest all the way to the ground.

[2-45]

  • Half way to the ground (-y direction)

t0= 0 s, v0 = 0 m/s, t=1.2 s, a=-9.80 m/s2

Y1/2=v0 t + ½ a t2 = -7.1 m

2. From rest all the way to the ground, y=2 Y1/2

t0= 0 s, v0 = 0 m/s, a=-9.80 m/s2, t= ? s

Y=v0 t + ½ a t2 = ½ a t2 => t= (2 y/a)1/2=1.7 s

slide12
Correct: v2 = v02 -2gy

v0

Dennis

Carmen

v0

H

vA

vB

Concept Question

Dennis and Carmen are standing on the edge of a cliff. Dennis throws a basketball vertically upward, and at the same time Carmen throws a basketball vertically downward with the same initial speed. You are standing below the cliff observing this strange behavior. Whose ball is moving fastest when it hits the ground?

1. Dennis' ball2. Carmen's ball3. Same

kinematics in two dimensions constant acceleration
Kinematics in Two DimensionsConstant Acceleration

Consider an object which moves in the (x,y) plane from the initial

position r0, at time t0 with velocity v0, with constant acceleration.

  • position: your coordinates (just r=(x,y) in 2-D)
  • displacement: r = r-r0 change of position
  • velocity: rate of change of position
    • average : r/t
    • instantaneous: lim t->0r/t
  • acceleration: rate of change of velocity
    • average: v/t
    • instantaneous: lim t->0v/t

Same concepts as in one dimension !

Equations of kinematics are derived for the x and y components

separately. Same equations as in one dimension !

ad