1 / 151

DNA Self-Assembly

DNA Self-Assembly. Robert Schweller Northwestern University. Speaking of Science talk Buena Vista University February 28, 2005. Outline. Importance of DNA Self-Assembly Synthesis of Nanostructures DNA Computing Tile Self-Assembly DNA Word Design. Smart Bricks. TILE. Wang Tiles. TILE.

fritzi
Download Presentation

DNA Self-Assembly

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DNA Self-Assembly Robert Schweller Northwestern University Speaking of Science talk Buena Vista University February 28, 2005

  2. Outline • Importance of DNA Self-Assembly • Synthesis of Nanostructures • DNA Computing • Tile Self-Assembly • DNA Word Design

  3. Smart Bricks

  4. TILE Wang Tiles

  5. TILE

  6. TILE G C A T C G C G T A G C

  7. TILE G C A T C G C G T A G C

  8. TILE

  9. TILE

  10. Super Small Circuits, Built Autonomously

  11. Molecular-scale pattern for a RAM memory with demultiplexed addressing (Winfree, 2003)

  12. DNA Computers + Output! Computer Program Input

  13. DNA Computers + Output! Computer Program Input Program

  14. DNA Computers + Output! Computer Program Input + Input Program

  15. DNA Computers + Output! Computer Program Input + Output! Input Program

  16. Outline • Importance of DNA Self-Assembly • Tile Self-Assembly (Generalized Models) • Tile Complexity • Shape Verification • Error Resistance • DNA Word Design

  17. Tile Model of Self-Assembly (Rothemund, Winfree STOC 2000) Tile System: t : temperature, positive integer G: glue function T: tileset s: seed tile

  18. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  19. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  20. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  21. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  22. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  23. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  24. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  25. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  26. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  27. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  28. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  29. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  30. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  31. Focus • Multiple Temperature Model • Adjust temperature during assembly • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y Goal: Reduce Tile Complexity

  32. Our Tile Complexity Results Multiple temperature model: (our paper) k x N rectangles: beats standard model: (our paper) Flexible Glue: N x N squares: (our paper) (Adleman, Cheng, Goel, Huang STOC 2001) beats standard model:

  33. Building k x N Rectangles k-digit, base N(1/k) counter: k N

  34. Building k x N Rectangles k-digit, base N(1/k) counter: k N Tile Complexity:

  35. Build a 4 x 256 rectangle: t = 2 S3 0 S2 0 S1 0 S g g g p C0 C1 C2 C3 S

  36. Build a 4 x 256 rectangle: t = 2 S3 0 g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 0 S3 0 S2 0 0 S1 g g p S C1 C2 C3

  37. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 S2 0 0 S1 0 0 p S C1 C2 C3

  38. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 S2 0 0 g g S1 0 0 0 1 S C1 C2 C3

  39. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 0 0 S2 0 0 0 0 S1 0 0 0 1 p S C1 C2 C3 C0 C1 C2 C3

  40. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 S g g g p 2 3 C0 C1 C2 C3 S3 0 0 0 0 0 0 S2 0 0 0 0 0 0 S1 0 0 0 1 1 1 p S C1 C2 C3 C0 C1 C2 C3

  41. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 p S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  42. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  43. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  44. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  45. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R … S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

  46. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 … S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R 0 0 S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

  47. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 P 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 P 3 3 P R 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

More Related