Bond prices and yields
Download
1 / 115

Bond Prices and Yields - PowerPoint PPT Presentation


  • 231 Views
  • Uploaded on

Bond Prices and Yields. CHAPTER 14. Bond Characteristics. Face or par value Coupon rate Zero coupon bond Compounding and payments Accrued Interest Indenture. Different Issuers of Bonds. U.S. Treasury Notes and Bonds Corporations Municipalities

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Bond Prices and Yields' - fred


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Bond characteristics
Bond Characteristics

  • Face or par value

  • Coupon rate

    • Zero coupon bond

  • Compounding and payments

    • Accrued Interest

  • Indenture

Bahattin Buyuksahin, Derivatives Pricing


Different issuers of bonds
Different Issuers of Bonds

  • U.S. Treasury

    • Notes and Bonds

  • Corporations

  • Municipalities

  • International Governments and Corporations

  • Innovative Bonds

    • Floaters and Inverse Floaters

    • Asset-Backed

    • Catastrophe

Bahattin Buyuksahin, Derivatives Pricing


Figure 14 1 listing of treasury issues
Figure 14.1 Listing of Treasury Issues

Bahattin Buyuksahin, Derivatives Pricing


Figure 14 2 listing of corporate bonds
Figure 14.2 Listing of Corporate Bonds

Bahattin Buyuksahin, Derivatives Pricing


Provisions of bonds
Provisions of Bonds

  • Secured or unsecured

  • Call provision

  • Convertible provision

  • Put provision (putable bonds)

  • Floating rate bonds

  • Preferred Stock

Bahattin Buyuksahin, Derivatives Pricing


Convertible bonds
Convertible Bonds

  • Give bondholders an option to exchange each bond for a specified nb of shares of common stock

  • Conversion ratio

    • = number of shares per convertible bond

  • Market conversion value

    • = conversion ratio * current market value per share

  • Conversion premium

    • = bond value - conversion value

    • intuitively: extra amount to pay so as to become a shareholder

  • Bahattin Buyuksahin, Derivatives Pricing


    Conversion example
    Conversion Example

    Bahattin Buyuksahin, Derivatives Pricing


    Conversion example1
    Conversion Example

    Bahattin Buyuksahin, Derivatives Pricing


    Innovation in the bond market
    Innovation in the Bond Market

    • Inverse Floaters

    • Asset-Backed Bonds

    • Catastrophe Bonds

    • Indexed Bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Table 14 1 principal and interest payments for a treasury inflation protected security
    Table 14.1 Principal and Interest Payments for a Treasury Inflation Protected Security

    Bahattin Buyuksahin, Derivatives Pricing


    Bond prices and yields1
    Bond Prices and Yields Inflation Protected Security

    • Time value of money and bond pricing

    • Time to maturity and risk

    • Yield to maturity

      • vs. yield to call

      • vs. realized compound yield

  • Determinants of YTM

    • risk, maturity, holding period, etc.

  • Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing

    P Inflation Protected SecurityB= Price of the bond

    Ct = interest or coupon payments

    T = number of periods to maturity

    y = semi-annual discount rate or the semi-annual yield to maturity

    Bond Pricing

    Bahattin Buyuksahin, Derivatives Pricing


    Price 10 yr 8 coupon face 1 000
    Price: 10-yr, 8% Coupon, Face = $1,000 Inflation Protected Security

    Ct = 40 (SA)

    P = 1000

    T = 20 periods

    r = 3% (SA)

    Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing1
    Bond Pricing Inflation Protected Security

    • Equation:

      • P = PV(annuity) + PV(final payment)

      • =

  • Example: Ct = $40; Par = $1,000; disc. rate = 4%; T=60

  • Bahattin Buyuksahin, Derivatives Pricing


    Bond prices and yields2
    Bond Prices and Yields Inflation Protected Security

    • Prices and Yields (required rates of return) have an inverse relationship

    • When yields get very high the value of the bond will be very low

    • When yields approach zero, the value of the bond approaches the sum of the cash flows

    Bahattin Buyuksahin, Derivatives Pricing


    Prices vs yields
    Prices Inflation Protected Securityvs. Yields

    • P   yield 

      • intuition

  • convexity

    • Fig 14.3

    • intuition: yield   P   price impact 

  • Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 3 the inverse relationship between bond prices and yields
    Figure 14.3 The Inverse Relationship Between Bond Prices and Yields

    Bahattin Buyuksahin, Derivatives Pricing


    Table 14 2 bond prices at different interest rates 8 coupon bond coupons paid semiannually
    Table 14.2 Bond Prices at Different Interest Rates (8% Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Yield to maturity
    Yield to Maturity Coupon Bond, Coupons Paid Semiannually)

    • Interest rate that makes the present value of the bond’s payments equal to its price

      Solve the bond formula for r

    Bahattin Buyuksahin, Derivatives Pricing


    Yield to maturity example
    Yield to Maturity Example Coupon Bond, Coupons Paid Semiannually)

    10 yr Maturity Coupon Rate = 7%

    Price = $950

    Solve for r = semiannual rate

    r = 3.8635%

    Bahattin Buyuksahin, Derivatives Pricing


    Yield measures
    Yield Measures Coupon Bond, Coupons Paid Semiannually)

    Bond Equivalent Yield

    7.72% = 3.86% x 2

    Effective Annual Yield

    (1.0386)2 - 1 = 7.88%

    Current Yield

    Annual Interest / Market Price

    $70 / $950 = 7.37 %

    Yield to Call

    Bahattin Buyuksahin, Derivatives Pricing


    Pure discount bonds zero coupon bonds
    Pure Discount Bonds (Zero-Coupon Bonds) Coupon Bond, Coupons Paid Semiannually)

    A zero rate (or spot rate), for maturity T is the rate of interest earned on an investment that provides a payoff only at time T

    • Discount bonds, also called zero-coupon bonds, are securities which “make a single payment at a date in the future known as maturity date. The size of this payment is the face value of the bond. The length of time to the maturity date is the maturity of the bond” (Campbell, Lo, MacKinley (1996)).

    Bahattin Buyuksahin, Derivatives Pricing


    Pure discount bond
    Pure Discount Bond Coupon Bond, Coupons Paid Semiannually)

    • The promised cash payment on a pure discount bond is called its face value or par value. Yield (interest rate) on a pure discount bond is the annualized rate of return to investors who buy it and hold it until it matures.

    Bahattin Buyuksahin, Derivatives Pricing


    Example
    Example Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing2
    Bond Pricing Coupon Bond, Coupons Paid Semiannually)

    • To calculate the cash price of a bond we discount each cash flow at the appropriate zero rate

    • The theoretical price of a two-year bond providing a 6% coupon semiannually is

    Bahattin Buyuksahin, Derivatives Pricing


    Bond yield
    Bond Yield Coupon Bond, Coupons Paid Semiannually)

    • The bond yield is the discount rate that makes the present value of the cash flows on the bond equal to the market price of the bond

    • Suppose that the market price of the bond in our example equals its theoretical price of 98.39

    • The bond yield is given by solving

      to get y = 0.0676 or 6.76%.

    Bahattin Buyuksahin, Derivatives Pricing


    Par yield
    Par Yield Coupon Bond, Coupons Paid Semiannually)

    • The par yield for a certain maturity is the coupon rate that causes the bond price to equal its face value.

    • In our example we solve

    Bahattin Buyuksahin, Derivatives Pricing


    Par yield continued
    Par Yield (continued) Coupon Bond, Coupons Paid Semiannually)

    In general if m is the number of coupon payments per year, d is the present value of $1 received at maturity and A is the present value of an annuity of $1 on each coupon date

    Bahattin Buyuksahin, Derivatives Pricing


    Bootstrap method to calculate discount factor
    Bootstrap Method to calculate discount factor Coupon Bond, Coupons Paid Semiannually)

    • A discount function is a set of discount factors, where each discount factor is just a present value multiplier. For example, d(1.0) is the present value of $1 dollar received in one year. The key idea is that each d(x) can be solved as one variable under one equation because we already solved for shorter-term discount factors.

    • The most popular approach is to use bootstrap method

    Bahattin Buyuksahin, Derivatives Pricing


    Bootstrap example
    Bootstrap : Example Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Discount factor
    Discount Factor Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Determining treasury zero rates
    Determining Treasury Zero Rates Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Treasury zero rate curve
    Treasury Zero Rate Curve Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 4 bond prices callable and straight debt
    Figure 14.4 Bond Prices: Callable and Straight Debt Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Example 14 4 yield to call
    Example 14.4 Yield to Call Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Realized yield versus ytm
    Realized Yield versus YTM Coupon Bond, Coupons Paid Semiannually)

    • Reinvestment Assumptions

    • Holding Period Return

      • Changes in rates affect returns

      • Reinvestment of coupon payments

      • Change in price of the bond

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 5 growth of invested funds
    Figure 14.5 Growth of Invested Funds Coupon Bond, Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 6 prices over time of 30 year maturity 6 5 coupon bonds
    Figure 14.6 Prices over Time of 30-Year Maturity, 6.5% Coupon Bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Holding period return single period
    Holding-Period Return: Single Period Coupon Bonds

    HPR = [ I + ( P0 - P1 )] / P0

    where

    I = interest payment

    P1= price in one period

    P0 = purchase price

    Bahattin Buyuksahin, Derivatives Pricing


    Holding period return example
    Holding-Period Return Example Coupon Bonds

    CR = 8% YTM = 8% N=10 years

    Semiannual Compounding P0 = $1000

    In six months the rate falls to 7%

    P1 = $1068.55

    HPR = [40 + ( 1068.55 - 1000)] / 1000

    HPR = 10.85% (semiannual)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 7 the price of a 30 year zero coupon bond over time at a yield to maturity of 10
    Figure 14.7 The Price of a 30-Year Zero-Coupon Bond over Time at a Yield to Maturity of 10%

    Bahattin Buyuksahin, Derivatives Pricing


    Default risk and ratings
    Default Risk and Ratings Time at a Yield to

    • Rating companies

      • Moody’s Investor Service

      • Standard & Poor’s

      • Fitch

    • Rating Categories

      • Investment grade

      • Speculative grade/Junk Bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 8 definitions of each bond rating class
    Figure 14.8 Definitions of Each Bond Rating Class Time at a Yield to

    Bahattin Buyuksahin, Derivatives Pricing


    Factors used by rating companies
    Factors Used by Rating Companies Time at a Yield to

    • Coverage ratios

    • Leverage ratios

    • Liquidity ratios

    • Profitability ratios

    • Cash flow to debt

    Bahattin Buyuksahin, Derivatives Pricing


    Table 14 3 financial ratios and default risk by rating class long term debt
    Table 14.3 Financial Ratios and Default Risk by Rating Class, Long-Term Debt

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 9 discriminant analysis
    Figure 14.9 Discriminant Analysis Class, Long-Term Debt

    Bahattin Buyuksahin, Derivatives Pricing


    Protection against default
    Protection Against Default Class, Long-Term Debt

    • Sinking funds

    • Subordination of future debt

    • Dividend restrictions

    • Collateral

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 10 callable bond issued by mobil
    Figure 14.10 Callable Bond Issued by Mobil Class, Long-Term Debt

    Bahattin Buyuksahin, Derivatives Pricing


    Default risk and yield
    Default Risk and Yield Class, Long-Term Debt

    • Risk structure of interest rates

    • Default premiums

      • Yields compared to ratings

      • Yield spreads over business cycles

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 11 yields on long term bonds 1954 2006
    Figure 14.11 Yields on Long-Term Class, Long-Term DebtBonds, 1954 – 2006

    Bahattin Buyuksahin, Derivatives Pricing


    Credit risk and collateralized debt obligations cdos
    Credit Risk and Collateralized Debt Obligations (CDOs) Class, Long-Term Debt

    • Major mechanism to reallocate credit risk in the fixed-income markets

      • Structured Investment Vehicle (SIV) often used to create the CDO

      • Mortgage-backed CDOs were an investment disaster in 2007

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 14 12 collateralized debt obligations
    Figure 14.12 Collateralized Debt Obligations Class, Long-Term Debt

    Bahattin Buyuksahin, Derivatives Pricing


    Chapter 15
    CHAPTER 15 Class, Long-Term Debt

    • The Term Structure of Interest Rates

    Bahattin Buyuksahin, Derivatives Pricing


    Overview of term structure
    Overview of Term Structure Class, Long-Term Debt

    • Information on expected future short term rates can be implied from the yield curve

    • The yield curve is a graph that displays the relationship between yield and maturity

    • Three major theories are proposed to explain the observed yield curve

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 1 treasury yield curves
    Figure 15.1 Treasury Yield Curves Class, Long-Term Debt

    Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing3
    Bond Pricing Class, Long-Term Debt

    • Yields on different maturity bonds are not all equal

      • Need to consider each bond cash flow as a stand-alone zero-coupon bond when valuing coupon bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Table 15 1 yields and prices to maturities on zero coupon bonds 1 000 face value
    Table 15.1 Yields and Prices to Maturities on Zero-Coupon Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Yield curve under certainty
    Yield Curve Under Certainty Bonds ($1,000 Face Value)

    • An upward sloping yield curve is evidence that short-term rates are going to be higher next year

    • When next year’s short rate is greater than this year’s short rate, the average of the two rates is higher than today’s rate

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 2 two 2 year investment programs
    Figure 15.2 Two 2-Year Investment Programs Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 3 short rates versus spot rates
    Figure 15.3 Short Rates versus Spot Rates Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Forward rates from observed rates
    Forward Rates from Observed Rates Bonds ($1,000 Face Value)

    fn = one-year forward rate for period n

    yn = yield for a security with a maturity of n

    Bahattin Buyuksahin, Derivatives Pricing


    Example 15 4 forward rates
    Example 15.4 Forward Rates Bonds ($1,000 Face Value)

    4 yr = 8.00% 3yr = 7.00% fn = ?

    (1.08)4 = (1.07)3 (1+fn)

    (1.3605) / (1.2250) = (1+fn)

    fn = .1106 or 11.06%

    Bahattin Buyuksahin, Derivatives Pricing


    Downward sloping spot yield curve example
    Downward Sloping Spot Yield Curve Bonds ($1,000 Face Value)Example

    Zero-Coupon RatesBond Maturity

    12% 1

    11.75% 2

    11.25% 3

    10.00% 4

    9.25% 5

    Bahattin Buyuksahin, Derivatives Pricing


    Forward rates for downward sloping y c example
    Forward Rates for Downward Sloping Bonds ($1,000 Face Value)Y C Example

    1yr Forward Rates

    1yr [(1.1175)2 / 1.12] - 1 = 0.115006

    2yrs [(1.1125)3 / (1.1175)2] - 1 = 0.102567

    3yrs [(1.1)4 / (1.1125)3] - 1 = 0.063336

    4yrs [(1.0925)5 / (1.1)4] - 1 = 0.063008

    Bahattin Buyuksahin, Derivatives Pricing


    Interest rate uncertainty
    Interest Rate Uncertainty Bonds ($1,000 Face Value)

    • What can we say when future interest rates are not known today

    • Suppose that today’s rate is 5% and the expected short rate for the following year is E(r2) = 6% then:

    • The rate of return on the 2-year bond is risky for if next year’s interest rate turns out to be above expectations, the price will lower and vice versa

    Bahattin Buyuksahin, Derivatives Pricing


    Interest rate uncertainty continued
    Interest Rate Uncertainty Continued Bonds ($1,000 Face Value)

    • Investors require a risk premium to hold a longer-term bond

    • This liquidity premium compensates short-term investors for the uncertainty about future prices

    Bahattin Buyuksahin, Derivatives Pricing


    Term structure of interest rates
    Term Structure of Interest Rates Bonds ($1,000 Face Value)

    • The term structure of interest rates (or yield curve) is the relationship of the yield to maturity against bond term (maturity).

    • Typical shapes are: increasing (normal), decreasing, humped and flat.

    Yield

    Maturity

    Bahattin Buyuksahin, Derivatives Pricing


    Upward vs downward sloping yield curve
    Upward Bonds ($1,000 Face Value)vs Downward SlopingYield Curve

    • For an upward sloping yield curve:

      Fwd Rate > Zero Rate > Par Yield

    • For a downward sloping yield curve

      Par Yield > Zero Rate > Fwd Rate

    Bahattin Buyuksahin, Derivatives Pricing


    Theories of the term structure
    Theories of the Term Structure Bonds ($1,000 Face Value)

    • A number of theory have been proposed: Expectation Hypothesis, Liquidity Preference Theory, Preferred Habitats Theory, Segmentation Hypothesis.

    • Fabozzi (1998): PureExpectation Hypothesis, Liquidity Preference Theory, Preferred Habitats Theory are different forms of the expectation theory ==> two major theories: expectation theory and market segmentation theory.

    Bahattin Buyuksahin, Derivatives Pricing


    Theories of the term structure of interest rates 1
    Theories of the Term Structure of Interest Rates (1) Bonds ($1,000 Face Value)

    • The Pure Expectation Hypothesis: Implied forward rates are unbiased expectations of future spot rates ==> a rising term structure indicate that market expects short-term rates to rise in the future; a flat term structure reflects expectations that the future short term structure will be constant; and so on; Hicks (1937). Problems: It neglects the risks inherent in investing in bonds: if forward rates were perfect predictors of future interest rates then the future prices of bonds will be known with certainty.

    • The Liquidity Preference Theory (Keynes): Given that there is uncertainty, long bonds should have higher returns than short bonds ==> we should expect a risk premium arising out from investors liquidity preferences. It is consistent with the empirical results that yield curves are upward sloping ==> positive risk premium.

    Bahattin Buyuksahin, Derivatives Pricing


    Theories of the term structure of interest rates 2
    Theories of the Term Structure of Interest Rates (2) Bonds ($1,000 Face Value)

    • The Preferred Habitat Theory: It adopts the view that the term structure is composed by two components: Expectations plus risk premium (= liquidity preference theory). However, the risk premium might be negative as well as positive to induce market participants to shift out of their preferred habitat (Modigliani & Sutch (1966)).

    • The Segmentation Hypothesis (Culbertson (1957)): It also recognises that investors have preferred habitat (= preferred habitat theory) ==> individuals have strong maturity preferences ==> there need be no relationship between bonds with different maturities ==> bonds with different maturities are traded in different markets.

    Bahattin Buyuksahin, Derivatives Pricing


    Expectations theory
    Expectations Theory Bonds ($1,000 Face Value)

    • Observed long-term rate is a function of today’s short-term rate and expected future short-term rates

    • Long-term and short-term securities are perfect substitutes

    • Forward rates that are calculated from the yield on long-term securities are market consensus expected future short-term rates

    Bahattin Buyuksahin, Derivatives Pricing


    Liquidity premium theory
    Liquidity Premium Theory Bonds ($1,000 Face Value)

    • Long-term bonds are more risky

    • Investors will demand a premium for the risk associated with long-term bonds

    • The yield curve has an upward bias built into the long-term rates because of the risk premium

    • Forward rates contain a liquidity premium and are not equal to expected future short-term rates

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 4 yield curves
    Figure 15.4 Yield Curves Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 4 yield curves concluded
    Figure 15.4 Yield Curves (Concluded) Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Interpreting the term structure
    Interpreting the Term Structure Bonds ($1,000 Face Value)

    • If the yield curve is to rise as one moves to longer maturities

      • A longer maturity results in the inclusion of a new forward rate that is higher than the average of the previously observed rates

      • Reason:

        • Higher expectations for forward rates or

        • Liquidity premium

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 5 price volatility of long term treasury bonds
    Figure 15.5 Price Volatility of Long-Term Treasury Bonds Bonds ($1,000 Face Value)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 6 term spread yields on 10 year versus 90 day treasury securities
    Figure 15.6 Term Spread: Yields on 10-Year Versus 90-Day Treasury Securities

    Bahattin Buyuksahin, Derivatives Pricing


    Forward rates as forward contracts
    Forward Rates as Forward Contracts Treasury Securities

    • In general, forward rates will not equal the eventually realized short rate

      • Still an important consideration when trying to make decisions :

        • Locking in loan rates

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 15 7 engineering a synthetic forward loan
    Figure 15.7 Engineering a Synthetic Forward Loan Treasury Securities

    Bahattin Buyuksahin, Derivatives Pricing


    Chapter 16
    CHAPTER 16 Treasury Securities

    • Managing Bond Portfolios

    Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing relationships
    Bond Pricing Relationships Treasury Securities

    • Inverse relationship between price and yield

    • An increase in a bond’s yield to maturity results in a smaller price decline than the gain associated with a decrease in yield

    • Long-term bonds tend to be more price sensitive than short-term bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 1 change in bond price as a function of change in yield to maturity
    Figure 16.1 Change in Bond Price as a Function of Change in Yield to Maturity

    Bahattin Buyuksahin, Derivatives Pricing


    Bond pricing relationships continued
    Bond Pricing Relationships Continued Yield to Maturity

    • As maturity increases, price sensitivity increases at a decreasing rate

    • Price sensitivity is inversely related to a bond’s coupon rate

    • Price sensitivity is inversely related to the yield to maturity at which the bond is selling

    Bahattin Buyuksahin, Derivatives Pricing


    Table 16 1 prices of 8 coupon bond coupons paid semiannually
    Table 16.1 Prices of 8% Coupon Bond (Coupons Paid Semiannually)

    Bahattin Buyuksahin, Derivatives Pricing


    Table 16 2 prices of zero coupon bond semiannually compounding
    Table 16.2 Prices of Zero-Coupon Bond (Semiannually Compounding)

    Bahattin Buyuksahin, Derivatives Pricing


    Duration
    Duration Compounding)

    • A measure of the effective maturity of a bond

    • The weighted average of the times until each payment is received, with the weights proportional to the present value of the payment

    • Duration is shorter than maturity for all bonds except zero coupon bonds

    • Duration is equal to maturity for zero coupon bonds

    Bahattin Buyuksahin, Derivatives Pricing


    Duration calculation
    Duration: Calculation Compounding)

    Bahattin Buyuksahin, Derivatives Pricing


    Spreadsheet 16 1 calculating the duration of two bonds
    Spreadsheet 16.1 Calculating the Duration of Two Bonds Compounding)

    Bahattin Buyuksahin, Derivatives Pricing


    Duration price relationship
    Duration/Price Relationship Compounding)

    Price change is proportional to duration and not to maturity

    D*= modified duration

    Bahattin Buyuksahin, Derivatives Pricing


    Rules for duration
    Rules for Duration Compounding)

    Rule 1 The duration of a zero-coupon bond equals its time to maturity

    Rule 2 Holding maturity constant, a bond’s duration is higher when the coupon rate is lower

    Rule 3 Holding the coupon rate constant, a bond’s duration generally increases with its time to maturity

    Rule 4 Holding other factors constant, the duration of a coupon bond is higher when the bond’s yield to maturity is lower

    Rules 5 The duration of a level perpetuity is equal to: (1+y) / y

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 2 bond duration versus bond maturity
    Figure 16.2 Bond Duration versus Compounding)Bond Maturity

    Bahattin Buyuksahin, Derivatives Pricing


    Table 16 3 bond durations yield to maturity 8 apr semiannual coupons
    Table 16.3 Bond Durations (Yield to Maturity = 8% APR; Semiannual Coupons)

    Bahattin Buyuksahin, Derivatives Pricing


    Convexity
    Convexity Semiannual Coupons)

    • The relationship between bond prices and yields is not linear

    • Duration rule is a good approximation for only small changes in bond yields

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 3 bond price convexity 30 year maturity 8 coupon initial yield to maturity 8
    Figure 16.3 Bond Price Convexity: 30-Year Maturity, 8% Coupon; Initial Yield to Maturity = 8%

    Bahattin Buyuksahin, Derivatives Pricing


    Correction for convexity
    Correction for Convexity Coupon; Initial Yield to Maturity = 8%

    Correction for Convexity:

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 4 convexity of two bonds
    Figure 16.4 Convexity of Two Bonds Coupon; Initial Yield to Maturity = 8%

    Bahattin Buyuksahin, Derivatives Pricing


    Callable bonds
    Callable Bonds Coupon; Initial Yield to Maturity = 8%

    • As rates fall, there is a ceiling on possible prices

      • The bond cannot be worth more than its call price

    • Negative convexity

    • Use effective duration:

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 5 price yield curve for a callable bond
    Figure 16.5 Price –Yield Curve for a Callable Bond Coupon; Initial Yield to Maturity = 8%

    Bahattin Buyuksahin, Derivatives Pricing


    Mortgage backed securities
    Mortgage-Backed Securities Coupon; Initial Yield to Maturity = 8%

    • Among the most successful examples of financial engineering

    • Subject to negative convexity

    • Often sell for more than their principal balance

      • Homeowners do not refinance their loans as soon as interest rates drop

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 6 price yield curve for a mortgage backed security
    Figure 16.6 Price -Yield Curve for a Mortgage-Backed Security

    Bahattin Buyuksahin, Derivatives Pricing


    Mortgage backed securities continued
    Mortgage-Backed Securities Continued Security

    • They have given rise to many derivatives including the CMO (collateralized mortgage obligation)

      • Use of tranches

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 7 panel a cash flows to whole mortgage pool panels b d cash flows to three tranches
    Figure 16.7 Panel A: Cash Flows to Whole Mortgage Pool; Panels B–D Cash Flows to Three Tranches

    Bahattin Buyuksahin, Derivatives Pricing


    Passive management
    Passive Management Panels B–D Cash Flows to Three Tranches

    • Bond-Index Funds

    • Immunization of interest rate risk:

      • Net worth immunization

        Duration of assets = Duration of liabilities

      • Target date immunization

        Holding Period matches Duration

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 8 stratification of bonds into cells
    Figure 16.8 Stratification of Bonds into Cells Panels B–D Cash Flows to Three Tranches

    Bahattin Buyuksahin, Derivatives Pricing


    Table 16 4 terminal value of a bond portfolio after 5 years all proceeds reinvested
    Table 16.4 Terminal value of a Bond Portfolio After 5 Years (All Proceeds Reinvested)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 9 growth of invested funds
    Figure 16.9 Growth of Invested Funds (All Proceeds Reinvested)

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 10 immunization
    Figure 16.10 Immunization (All Proceeds Reinvested)

    Bahattin Buyuksahin, Derivatives Pricing


    Table 16 5 market value balance sheet
    Table 16.5 Market Value Balance Sheet (All Proceeds Reinvested)

    Bahattin Buyuksahin, Derivatives Pricing


    Cash flow matching and dedication
    Cash Flow Matching and Dedication (All Proceeds Reinvested)

    • Automatically immunize the portfolio from interest rate movement

      • Cash flow and obligation exactly offset each other

        • i.e. Zero-coupon bond

    • Not widely used because of constraints associated with bond choices

    • Sometimes it simply is not possible to do

    Bahattin Buyuksahin, Derivatives Pricing


    Active management swapping strategies
    Active Management: Swapping Strategies (All Proceeds Reinvested)

    • Substitution swap

    • Intermarket swap

    • Rate anticipation swap

    • Pure yield pickup

    • Tax swap

    Bahattin Buyuksahin, Derivatives Pricing


    Horizon analysis
    Horizon Analysis (All Proceeds Reinvested)

    • Select a particular holding period and predict the yield curve at end of period

    • Given a bond’s time to maturity at the end of the holding period

      • Its yield can be read from the predicted yield curve and the end-of-period price can be calculated

    Bahattin Buyuksahin, Derivatives Pricing


    Contingent immunization
    Contingent Immunization (All Proceeds Reinvested)

    • A combination of active and passive management

    • The strategy involves active management with a floor rate of return

    • As long as the rate earned exceeds the floor, the portfolio is actively managed

    • Once the floor rate or trigger rate is reached, the portfolio is immunized

    Bahattin Buyuksahin, Derivatives Pricing


    Figure 16 11 contingent immunization
    Figure 16.11 Contingent Immunization (All Proceeds Reinvested)

    Bahattin Buyuksahin, Derivatives Pricing