1 / 10

120 likes | 273 Views

Kinetic Theory. Microscopic Analysis. The behavior of a gas should be described by the molecules. The gas consists of a large number of identical particles of mass m . The particles have negligible size and no internal structure.

Download Presentation
## Kinetic Theory

**An Image/Link below is provided (as is) to download presentation**
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.
Content is provided to you AS IS for your information and personal use only.
Download presentation by click this link.
While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

**Microscopic Analysis**• The behavior of a gas should be described by the molecules. • The gas consists of a large number of identical particles of mass m. • The particles have negligible size and no internal structure. • The particles are moving in random dirctions with speeds independent of direction • Collisions between particles and with the walls are perfectly elastic.**Collision Force**• Follow a collision with a wall perpendicular to x. • Particle has mass m and a velocity vx. • Strike the wall: Dt = 2L/vx. • Impulse: Dp = 2mvx. • The force from one particle: L Fx v m**Pressure Force**• The pressure on the wall comes from all the particles. • The volume is V = AL. • Find the value for N particles. L A**Three Dimensions**• The pressure come from all three dimensions, and is equal in all three. • Relate the pressure to the average speed. V P N**Theory Match**• The expression from a particle level relates the average kinetic energy. • This almost matches the ideal gas law. V P N**Temperature as Energy**• For the particle-level theory to match the experimental law we equate them. • This is kinetic theory. • Temperature measures the average kinetic energy.**What is the average energy of an air molecule at room**temperature (293 K)? What is average speed for a nitrogen molecule (28 g/mol)? Energy directly relates to temperature. (3/2)kT = 6.07 x 10-21 J. To get the speed requires the mass. m = (0.028 kg/mol) / (6.022 x 1023 /mol) = 4.65x10-26 kg Average Energy**Distribution of Speeds**• Kinetic theory used the average speed. • Actual atoms fall into a range of speeds. • The Maxwell-Boltzmann distribution describes the probability of a molecule having a particular speed.**Real Gases**• The assumptions for kinetic theory are approximately true. • Non-zero molecular size • Non-zero force between molucules • For the Van der Waals force in air, the effect is about 1% difference from an ideal gas. next

More Related