1 / 10

Clase 205

Clase 205. 2. 1. 3. Ejercicios variados. x 2 + 6x – 27. g ( x ) =. 81 – x 2. Ejercicio 1. Sean las funciones: f(x) =  x y. a) Halla la función h(x) = (fog)(x). b) Calcula los ceros de h(x) y sus valores inadmisibles. f(x) =  x. x 2 + 6x – 27. g ( x ) =. x 2 + 6x – 27.

Download Presentation

Clase 205

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 205 2 1 3 Ejercicios variados

  2. x2 + 6x – 27 g(x) = 81 – x2 Ejercicio 1 Sean las funciones: f(x) =  x y a) Halla la función h(x) = (fog)(x) b) Calcula los ceros de h(x) y sus valores inadmisibles.

  3. f(x) =  x x2 + 6x – 27 g(x) = x2 + 6x – 27 x2 + 6x – 27 81 – x2 81 – x2 81 – x2 a) h(x) = (fog)(x) = f [g(x) ] = f =

  4. x2 + 6x – 27 x2 + 6x – 27 81 – x2 81 – x2 Ceros b) h(x) = h(x) = 0 x  : x   9 = 0 x2 + 6x – 27 = 0 (x + 9)(x – 3) = 0 N.S. x = –9 ó x = 3

  5. x2 + 6x – 27 x2 + 6x – 27 81 – x2 81 – x2 3 9 x – 3 < 0 9 – x x – 3 > 0 x – 9 Valores inadmisibles h(x) = C.N. x1 = 3 < 0 C.D. x2 = 9 (x + 9)(x – 3) < 0 (9 + x)(9 – x) – + + x –9 x < 3; x  –9 ó x > 9

  6. Dada la ecuación x2 + 4x – 24y + 100 = 0 Ejercicio 2 Escribe la ecuación y esboce el gráfico de la elipse que cumple:  su centro es el vértice de esta curva,  uno de los vértices no princi- pales coincide con el foco, la distancia focal es de 16 u.  a) Halla el área de la figura formada por los focos de ambas curvas.

  7. x2+ 4x – 24y + 100 = 0 x2+ 4x = 24y – 100 x2 + 4x + 4 = 24y – 100 + 4 = 24y – 96 (x + 2)2 (x + 2)2 = 24(y – 4) Parábola que abre hacia arriba de vértice V(–2;4) (–2;4) O 4p = 24 b = p = 6 6 B1 F(–2;10) (–2;10)

  8. O(–2;4) b = 6 2c = 16 B1(–2;10) c = 8 a2 = b2 + c2 a2 = 62 + 82 a2 = 36 + 64 a2 = 100 a = 10 (x – )2 (y – )2 4 + 2 k h + = 1 a2 b2 36 100

  9. O(–2;4) B1(–2;10) y B1 a = 10 B2(–2; –2) 10 b = 6 c = 8 A = 48 u2 O A2 A1 4 F2 F1 x 0 –12 –10 6 –2 8 –2 A2(8;4) A1(–12;4) B2 F2(6;4) F1(–10;4)

  10. g(x) = 1 – 3x Para el estudio individual 1. Sea f(x) = log5(x2 – 1) y Obtenga la ecuación de la inversa de f(x) con x > 1. a) Halla (fog)(x) y su dominio. 2. Resuelve la ecuación: log 10 = log2(4 – x) – (hop)(x) siendo h(x)= log2x y p(x)=x – 1

More Related