220 likes | 295 Views
Explore the strong coupling regime in cavity quantum electrodynamics utilizing whispering gallery modes resonators. This study delves into atom-cavity coupling, coherence time, and population lifetime analysis for optimal spectral hole and optical bistability observations. The aim is to measure and enhance cavity QED parameters for strong coupling. Experimental setup details and coherence time assessment are discussed for reversible state transfer and single atom detection investigations. Prospects for improving atom-cavity coupling, population lifetime, and spectral hole lifetime are evaluated, emphasizing the need for smaller resonators with higher quality factors and distinct materials.
E N D
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. David McAuslan – QIP-REIDS2011 Coherent Spectroscopy of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators David McAuslan – QIP-REIDS2011
Whispering Gallery Modes (WGMs). Strong Coupling Regime of Cavity QED. Experiments. Atom-Cavity Coupling. Coherence Time. Population Lifetime. Spectral Hole Lifetime. Optical Bistability/Normal-Mode Splitting. David McAuslan – QIP-REIDS2011 Outline David McAuslan – QIP-REIDS2011
Electric field confined to equator. High quality factor. Small mode volume. Ideal for strong coupling cavity QED. David McAuslan – QIP-REIDS2011 Whispering Gallery Modes [1] [1] S. Arnold et al., Opt. Lett. 28 (2003). David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Whispering Gallery Modes [1] [4] [3] [2] [2] [3] [1] T. J. Kippenberg, PhD. Thesis (2004). [2] A. Schliesser et al., Nature Physics 4 (2008). [3] Y. Park et al., Nano Lett. 6 (2006). [4] J. Hofer et al., PRA 82 (2010). David McAuslan – QIP-REIDS2011
κ – cavity decay rate: γ – atomic population decay rate: γh– atomic phase decay rate: g – coupling between atoms and cavity: David McAuslan – QIP-REIDS2011 Strong Coupling Regime David McAuslan – QIP-REIDS2011
Critical atom number: Saturation photon number: N0<1, n0<1. “Good cavity” strong coupling regime: g > κ, γ, γh. “Bad cavity” strong coupling regime: κ > g >> γ, γh. David McAuslan – QIP-REIDS2011 Strong Coupling Regime David McAuslan – QIP-REIDS2011
Reversible State Transfer Single Atom Detection David McAuslan – QIP-REIDS2011 Why Strong Coupling? D. L. McAuslan et al., Physical Review A 80, 062307 (2009) David McAuslan – QIP-REIDS2011
Measure the properties of a Pr3+:Y2SiO5 resonator. Atom-cavity coupling. Coherence time. Population lifetime. Spectral hole lifetime. Calculate cavity QED parameters to determine viability of strong-coupling regime. David McAuslan – QIP-REIDS2011 Aim of Experiments David McAuslan – QIP-REIDS2011
Resonator: 0.05% Pr3+:Y2SiO5. r = 1.95mm. Q = 2 x 106. Sample: 0.02% Pr3+:Y2SiO5. 5x5x5mm cube. David McAuslan – QIP-REIDS2011 Experimental Setup LO Probe D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 πPulse Length π = 0.32μs for Pin = 700μW D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
Rabi frequency: Atom-Cavity Coupling: Compare to g calculated from the theoretical mode volume (V = 5.40 x 10-13 m3 for r = 1.95mm): David McAuslan – QIP-REIDS2011 Atom-Cavity Coupling D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Coherence Time • Through Resonator • Coupled into Resonator e-2τ/T2 e-2τ/T2 D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Coherence Time • Through Resonator • Coupled into Resonator e-2τ/T2 e-2τ/T2 T2 = 30.8 μs T2 = 21.0 μs D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
Through Resonator Coupled into Resonator David McAuslan – QIP-REIDS2011 Population Lifetime e-Τ/T1 e-Τ/T1 D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
Through Resonator Coupled into Resonator David McAuslan – QIP-REIDS2011 Population Lifetime e-Τ/T1 e-Τ/T1 T1 = 205μs T1 = 187μs D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Spectral Hole Lifetime D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011
Optical bistability and normal-mode splitting studied by Ichimura and Goto in a Pr3+:Y2SiO5 Fabry-Perot resonator [1]. Theory modified for a WGM resonator. Fitting to experimental data gives: g = 2πx 2.2 kHz. David McAuslan – QIP-REIDS2011 Optical Bistability 800μW 400μW Sweep Sweep 200μW 100μW 80μW 40μW [1] K. Ichimura and H. Goto, PRA 74 (2006) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Cavity QED Parameters • This resonator: • κ = 2π x 138 MHz. • γ = 2π x 0.851 kHz. • γh= 2π x 2.34 kHz. • g = 2π x 1.73 kHz. • N0 = 2.15 x 105, n0 =0.166. • Need: • Smaller resonators. • Higher Q factors. • Different materials. David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Smaller V • Single point diamond turning. • Crystalline resonators with R = 40 μm. • Possible to reduce V by 3 orders of magnitude. [1] [1] I. S. Grudinin et al., Opt. Commun. 265 (2006) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Higher Q • We have measured Q = 2 x 108 in Y2SiO5 resonators. • Q = 3 x 1011 in CaF2 [1]. • Bulk losses in Y2SiO5 measured using Fabry-Perot cavity [2]. • α≤ 7 x 10-4 cm-1. • Max Q ~ 3 x 108. • At least 2 orders of magnitude improvement possible. • Bulk losses should be lower in IR. [1] A. A. Savchenkov et al., Opt Exp. 15 (2007) [2] H. Goto et al., Opt. Exp. 18 (2010) David McAuslan – QIP-REIDS2011
David McAuslan – QIP-REIDS2011 Materials • N0<1 for different materials. David McAuslan – QIP-REIDS2011
Performed an investigation into strong coupling cavity QED with rare-earth-ion doped WGM resonators. Direct measurement of cavity QED parameters of a Pr3+:Y2SiO5 WGM resonator. g = 2π x 1.73 kHz. γ= 2π x 0.851 kHz. γh= 2π x 2.34 kHz. Observed optical bistability and normal-mode splitting in resonator. Achieving the strong coupling regime of cavity QED is feasible based on existing resonator technology. David McAuslan – QIP-REIDS2011 Conclusions