1 / 30

Recent Results on the Quark Coalescence Model

Károly Ürmössy and Tamás S. Bíró MTA KFKI RMKI , ELTE Fürstenfeld 15-17 April 2009. Recent Results on the Quark Coalescence Model. Content. Thermalized Hadrons and Quarks at RHIC ? Hadronisation by Coalescence, quasi-particles of the quark-gluon matter Comparison with pQCD

fai
Download Presentation

Recent Results on the Quark Coalescence Model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Károly Ürmössy and Tamás S. Bíró MTA KFKI RMKI, ELTE Fürstenfeld 15-17 April 2009 Recent Results on the Quark Coalescence Model

  2. Content • Thermalized Hadrons and Quarks at RHIC ? • Hadronisation by Coalescence, quasi-particles of the quark-gluon matter • Comparison with pQCD • Why power-laws?

  3. Intro: From thermal quarks to hadron spectra The detector sees - Cooper-Fry formula Instant hadronisation at propertime τ, radial flow v║r (Blastwave)

  4. Ansatzfor the Transverse Spectra Ansatz: Co-moving Energy:

  5. Flow In the co-moving system the energy is minimal at the maximal yield: The value of the maximum is proportional to the mass :

  6. Antiproton spektrum (RHIC) Adler S S, et al. (PHENIX Collaboration) 2004 Phys. Rev. C69 034909 dN/pTdpT PT [GeV] Max:

  7. Thermal hadrons at RHIC (Qmesons – 1)*2 = 3*(Qbaryons - 1) Vflow = 0.42 – 0.55 Thermal up to 6-10 GeV

  8. Thermalisation at the Level of Quarks? Instant hadronisation → no time evollution of the fqs during the hadronization IF for pT» m coalescence constraint quark disp no p pick-up from the plasma THEN → Quarks, hadrons have power-law asymptotics → The hadron power scales with the quark number: (Qmesons – 1)*2 = 3*(Qbaryons - 1)

  9. Non-Extensivity q Scaling T.S.Biro, K. Ürmössy: Pions and kaons from stringy quark matter arXiv:0812.2985v1 [hep-ph] Qquark - 1= (Qmeson – 1)2 = 3(Qbaryon - 1)

  10. Tslope - m Scaling T.S.Biro, K. Ürmössy: Pions and kaons from stringy quark matter arXiv:0812.2985v1 [hep-ph] Tslope = T0+ (Qhadron- 1)m

  11. Quasi-particles at Low pT Simple product does not work! mi << M. We need something like P

  12. Let’s Try Quarks With Mass-distribution! J Zimányi et al 2005 J. Phys. G: Nucl. Part. Phys.31 711-718 To achieve that have a maximum around M/2 for mesons

  13. Power-law quasi-particles, with distrbuted mass: T.S.Biró,P.Lévai,P.Ván,J.Zimányi: PRC,vol.75,Issue3,id.034910,03/2007.

  14. Coalescence - pQCD T.S.Bíró,G.G.Barnaföldi,K.Ürmössy: J.Phys.G:Nucl.Part.Phys.35044012, 2008.

  15. Why Power Laws? Superstatistics C. Beck, E. Cohen, H. L. Swinney:Phys. Rev. E 72, 056133 (2005) Tamás Bíró’ Talk

  16. Kinetic model Langevin problem:

  17. Kinetic model The equivalent Fokker-Planck problem: Let G, D depend on p through the energy! To get our power-law distribution as stacionary sollution we have to enter a linear spectral slope T(E)

  18. Kinetc model T. S. Biró, G. Györgyi, A. Jakovác, G. Purcsel 2005 J.Phys.G:Nucl.Part.Phys.31 S759-S763 into the equation for G and D. All D(E) – G(E) pairs result in our power-law distribution. Then we know what stochastic equation drives the quasi-particles of the plasma.

  19. Non-additiveEnergy Composition T. S. Biró, G. Purcsel 2008Phys. Lett A 3721174

  20. Equilibration

  21. Variationand energydistribution: konst The termodynamic temperature is the intercept of the spectral slope:

  22. Conclusion • There can be thermalisation at RHIC at the quark level, because: Under 6-8 GeV the power of Mesonic to Baryonic spectra goes as 2 to 3. • T(hadron) scales with m linearly: T(m) = To + (q - 1)m • Our calculations are in qualitative agreement with pQCD calculations • We use power-law distributed quarks because: pQCD, Addition Rules, T fluctuations, Fokker-Planck with D(E)

  23. Refrences T.S.Bíró,G.G.Barnaföldi,K.Ürmössy:PionandKaonspectrafromdistributedmassquarkmatter,J.Phys.G:Nucl.Part.Phys.35044012(6pp)doi:10.1088/0954-3899/35/4/044012,2008. T.S.Bíró,K.Ürmössy:Fromquarkcombinatoricstospectral coalescence,TheEuropeanPhysicalJournal,SpecialTopics,Volume155,Number1/March,2008. T.S.Biro, K. Ürmössy: Pions and kaons from stringy quark matter arXiv:0812.2985v1 [hep-ph] Submitted: 16 Dec 2008. Tamas S. Biro, Gabor Purcsel and Karoly Urmossy: Non-Extensive Approach to Quark Matter arXiv:0812.2104 Submitted: December 2008.

  24. Coalescence Factor

  25. Lattice EOS – Mass Distribution

  26. Lattice-EOS with u, d, s Quarks (μ=0) T.S.Biró,P.Lévai,P.Ván,J.Zimányi: PRC,vol.75,Issue3,id.034910,03/2007.

  27. T.S.Biró,P.Lévai,P.Ván,J.Zimányi:J.Phys.G:Nucl.Part.Phys.32No12(Dec. 2006) S205-S212. ThermodynamicConsistency

  28. T.S. Biró, A. László, P. Ván: http://arxiv.org/abs/heph-ph/0612085v1 μandT IndependentMass-distribution from Lattice EOS

  29. T.S. Biró, A. László, P. Ván: http://arxiv.org/abs/heph-ph/0612085v1 Mass-Distribution from the Inversion of the Meier-transform

  30. T.S.Biró,P.Lévai,P.Ván,J.Zimányi: PRC,vol.75,Issue3,id.034910,03/2007. μ,TIndependency→Mass-Gap

More Related