nmr characterization of sidewall functionalized swnt n.
Skip this Video
Loading SlideShow in 5 Seconds..
NMR Characterization of Sidewall Functionalized SWNT PowerPoint Presentation
Download Presentation
NMR Characterization of Sidewall Functionalized SWNT

Loading in 2 Seconds...

play fullscreen
1 / 31

NMR Characterization of Sidewall Functionalized SWNT - PowerPoint PPT Presentation

  • Uploaded on

NMR Characterization of Sidewall Functionalized SWNT. By Heather Rhoads. Abstract.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'NMR Characterization of Sidewall Functionalized SWNT' - eyal

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Since the discovery of SWNT (Single walled carbon nanotubes) there has been an intense effort to characterize, understand, and exploit their properties.1, 2 To achieve the full potential of SWNT, they must be debundled into individual SWNTs. Debundling is achieve through several techniques including sidewall functionalization. The functionalization must be proven but currently utilized techniques give little information about the functionalization. More recently nuclear magnetic resonance (NMR) has been utilized to prove functionalization and the structure of the functionalized SWNT. This paper gives background, theory, review of the literature, and future directions.

  • SWNT discovery Iijima in 1991
  • Avg Diameter of 1 nm
  • Length up to 5 cm
  • Produced by
    • Arc discharge
    • Laser ablation
    • Chemical vapor deposition (CVD)
literature review
Literature Review
  • First utilized on Multiwalled carbon nanotubes3-5
  • Theoretical background calculations6-10
    • Location of SWNT in 13C NMR
    • Separation of types of SWNT
  • Properties
    • Structural, electronic, phase transitions, and dynamics11
    • Theoretical separation of metallic and semiconducting12
    • Cutting, bending twisting and defects effect electronic properties13-14
literature review cont
Literature Review (cont)
  • Growth Mechanism study15-17
  • Monitor opening and closing of SWNT18
  • Hydrogen gas storage19-23
  • Adsorption sites and mechanism24-27
  • Lithium and Cesium Intercalated28-33
  • Polymers and SWNT interactions34-42
desired properties of swnt
Desired Properties of SWNT
  • Electrical – 1000x greater than copper
  • Mechanical - specific strength is aprox. 200x greater than steel
  • Elastic – 5x greater than steel
characteristics of swnt
Characteristics of SWNT
  • SWNT is a rolled up graphene sheet
  • Composed of sp2 hybirderized carbon
  • Hexagonal pattern
  • Rolling along the hexagonal pattern forms along chiral vector a1, a2 giving units (n, m)
  • Given by the following equation:

Ch = n (a1) + m (a2)

vector units of swnt
Vector units of SWNT

Figure 1. The n and m coordinates of SWNT structure.

properties determined by chiral vector
Properties Determined by Chiral Vector
  • Diameter - dt = (Ö3/p) ac-c (m2 + mn + n2)1/2;
  • Metallic - n-m/3 = integer: 1, 2,3…
  • Semiconducting – all other cases
  • Type of SWNT
    • Arm chair – n=m
    • Zigzag – m=0
    • Chiral – all other combinations of (n, m)
forms of swnt
Forms of SWNT

Figure 2. Top) armchair SWNT, Middle) zigzag SWNT, Bottom) chiral SWNT. 43-44

  • SWNT can not over come van der Waals effects
  • Form bundles (range from 5 to 40 nm)
  • Dramatically decrease desired properties
  • Dispersing in Organic solvents
  • Dispersing with Surfactant Interaction
  • Functionalization of the SWNT
    • End
    • Sidewall
      • Noncovalent
      • Covalent
characterization techniques
Characterization Techniques
  • Raman spectroscopy
  • Optical absorption
  • Transmission Electron Microscopy (TEM)
  • Functionalization = Defect
  • Nuclear Magnetic Resonance (NMR)
nuclear magnetic resonance
Nuclear Magnetic Resonance
  • NMR is a phenomenon which occurs when the nuclei of certain atoms are immersed in a static magnetic field and exposed to a second oscillating magnetic field.55, 56
  • Neutrons, protons, and electrons posses spin
  • This creates a magnetic field around the nucleus
nmr background
NMR background
  • Unpaired protons create NMR signals
  • Nucleus posses magnetic moment, μ, given by the following:
  • I=spin; γ = gyromagentic ratio; h = Planck’s const
energy of nmr
Energy of NMR
  • Energy of particle is changing, which is detected in NMR through the following equation:
  • B is the strength of the magnetic field at the nucleus
transition state
Transition state

E = - m B cos q

spin lattice relaxation
Spin – Lattice Relaxation
  • Given by T1 is dependent upon time for return along z axis
  • Given by the following equation

Mz = Mo (1 - e-t/T1)

  • Provides structural information
    • Number of other similar atoms
    • Functional group information
spin spin relaxation
Spin – Spin Relaxation
  • Spin-spin relaxation is found by the following:

1/T2* = 1/T2 + 1/T2inhomo

  • Information given
    • Number of identical substituents
    • Position of probed atom in comparison to other probed atoms
current applications noncovalent
Current Applications: Noncovalent
  • Nakashima et al reported pyrene carrying ammonium ion noncovalent sidewall functionalization, which was determined by proton NMR.57
  • Li et al reported an interaction with the porphine THPP and SWNT, which could been seen by peak broadening.58
  • Wong and Banerjee formed a new type of Wilkinson’s catalyst with SWNT and observed the mechanism with 1H, 31P, and 13C NMR.59
  • These noncovalent bonding methods are being utilized to separate semiconducting from metallic SWNT, building materials in aqueous solutions, and new sources for catalyst material.
covalent radicals
Covalent: Radicals
  • Covalently bonded SWNT are more prevalent
  • Radical reactions are one type of reaction
  • Umek et al reported the addition of carbon radicals, which is confirmed with line broadening in proton NMR.50
  • A photoinduced radical addition of perfluorinated alkyl radicals to SWNT was monitored with 19F NMR.60
  • Billups et al reports alkyl addition from radical ions generated from varying salts; the material was then characterized with solid state 13C NMR.61
covalent photosensitive and electrical circuits with single bonds
Covalent: Photosensitive and Electrical circuits with single bonds
  • The protonation of SWNT induced by pH change was observed in 13C NMR, which showed a downfield shift and new peak.62
  • Zhang et al reported functionalizing SWNT with aniline in a ratio 360:1 SWNT to aniline, which structure is proven by with an chemical shift and broadening of the proton NMR spectra.63
  • Silylation of SWNT was determined by an downfield shift and broadening of peaks in 29Si NMR.64
  • These materials are being utilized as photosensor materials and electronic circuits
covalent cycloaddition
Covalent: cycloaddition
  • The classic cycloaddition, Diels-Alder reaction, has been utilized to functionalize SWNT with o-quinodimethane under microwave irradiation.65
  • Zhang et al has performed a similar Diels-Alder reaction excepted the SWNT are fluorinated.66
  • The NMR proves the structure with broadening of the peaks, chemical shift, and generation of new peak.
  • These materials are the precursors for polymer functionalization and photoelectrical materials.
covalent nitrenes and carbenes cycloaddtion
Covalent: Nitrenes and Carbenes Cycloaddtion
  • Holzinger et al has performed an extensive study utilizing the cylcoaddition of nitrene with a large range of R groups to SWNT. The 1H NMR displayed an upfield shift and broadening of peaks from the starting material.60,67
  • Nitrene cycloaddition is utilized to attach carborane cages to the sidewalls of SWNTs. 13C NMR shows a downfield shift, which is the result of the sp2 carbon changing to sp3 carbon attached to an nitrogen.68
  • The Bingel Reaction was utilized to create a carbene, which was tagged with fluorine and observed with 19F NMR.69
  • Materials utilized new polymers, target drug for cancers, and sensors, respectively
covalent 1 3 dipolar addition
Covalent: 1, 3 dipolar addition
  • 1, 3 dipolar addition of nitrile oxide.70
  • 1,3 dipolar addition of nitrile amine.71
  • Both confirm with proton NMR
    • Peak broadening
    • Upfield shift
  • Photomaterials
    • Sensor
    • Voltaic cell
Determine Sidewall Functionalization through NMR

Peak broadening

Chemical Shift

New materials







future work
Future Work
  • Functionalized SWNT are proven to be an essential part of several fields such as medical, electronical, and mechanical.
  • The vast goal of utilizing NMR to characterize SWNT is to identify the functional groups and their structure, so the reaction conditions can be tailored for specific target needs.
  • The refinement of characterization techniques for functionalized SWNT is essential for these materials to become the part of our everyday life.
  • Dr. Grady, Dr. Cheville, Dr. Ford, and Dr. Teeters
  • Dr. Reiten
  • Dr. Nelson
  • Heather Beem and Jason Watkins
  • My Family
  • Iijima, S. Nature 1991, 354, 56-58.
  • Iijima, S.; Ichihashi, T. Nature1993, 363, 603-605.
  • a) Kishinevsky, S.; Nikitenko, S.; Pickup, D.; van-Eck, E.; Gedanken, A. Chem. Mater.2002, 14, 4498-4501. b) Simon, F.; Kramberger, Ch.; Pfeiffer, R.; Kuzmany, H.; Zólyomi, V.; Kürti, J.; Singer, P.; Alloul, H. Physical Review Letters. 2005, 95, 017401-1. c) Romaneko, K.; Fonseca, A.; Dumonteil, S.; Nagy, J.; d’Espinose de Lacaillerie, J.; Lapina, O.; Fraissard, J. J. S.S. NMR.,2005, 28, 135-141. d) Kneller, J.; Soto, R.; Surber, S.; Colomer, J.; Fonseca, A.; Nagy, J.; Van Tendeloo, G.; Pietraβ, T. J. Am. Chem. Soc. 2000, 122, 10591-10597.
  • a) Wu, H.; Yang, Y.; Ma, C.; Kuan, H. J. Poly. Sci. 2005, 43, 6084-6094. b) Xu, M.; Huang, Q.; Chen, Q.; Pingsheng, G.; Sun, Z. Chem. Phys. Let. 2003, 375, 598-604. c) Jiang, G.; Wang, L.; Chen, C.; Dong, X.; Chen, T.; Yu, H. Materials Letters. 2005, 59, 2085-2089.
  • a) Maurin, G.; Bousquet, C.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Chem. Phys. Let. 1999, 312, 14-18. b) Marques, M.; d’Avezac, M.; Mauri, F. APS2006, 1, 0510197. c) Singer, P.; Wzietek, P.; Alloul, H.; Simon, F.; Kuzmany, H. APS2006, 1, 0510195. d) Zolyomi, V.; Rusznyák, A.; Kürti, J.; Gali, A.; Simon, F.; Kuzmany, H. Szabados, A.; Surján, P.
  • Zurek, E.; Autschabch, J. J. Am. Chem. Soc. 2004, 126, 13079-13088.
  • Besley, N.; Titman, J.; Wright, M. J. Am. Chem. Soc. 2005, 127, 17948-17953.
  • Marques, M.; d’Avezac, M.; Mauri, F. Physical Rev. B2006, 73, 125433-1-125433-6.
  • Matsuo, Y.; Tahara, K.; Nakamura, E. Organic Letters2003, 5, 3181-3184.
  • Latil, S.; Henrard, L.; Goze Bac, C.; Bernier, P.; Rubio, A. Physical Rev. Letters2001, 86, 3160-3163.
  • Orendt, A. Encyclopedia of NMR2002, 9, 551-558.
  • Tang, X.; Kleinhammes, A.; Shimoda, H.; Fleming, L. Science2000, 288, 492-494.
  • Goze Bac, C.; Latil, S.; Vaccarini, L.; Bernier, P.; Gaveau, P.; Tahir, S.; Micholet, V.; Aznar, R.; Rubio, A.; Metenier, K.; Beguin, F. Physical Rev. B2001, 63, 100302-1-100302-4.
  • Hayashi, S.; Hoshi, F.; Ishikura, T.; Yumura, M.; Ohshima, S. Carbon2003, 41, 3047-3056.
  • Urban, M.; Konya, Z.; Mehn, D.; Kiricsi, I. J. of Molecular Structure2005, 744, 93-99.
  • Blackburn, J.; Yan, Y.; Engtrakul, C.; Parilla, P.; Jones, K.; Gennett, T.; Dillon, A.; Heben, M. Chem. Mater. 2006, 18, 2558-2566.
  • Perez-Cabero, M.; Rodriguez-Ramos, I.; Overweg, A.; Sobrados, I.; Sanz, J.; Guerrero-Ruiz, A. Carbon 2005, 43, 2631-2634.
  • Geng, H.; Zhang, X.; Mao, S.; Kleinhammes, A.; Shimoda, H.; Wu, Y.; Zhou, O. Chem.Phys. Let.2004, 399, 109-113.
  • Shen, K.; Pietraβ, T. Applied Physics Letters2004, 84, 1567.
  • Shen, K.; Curran, S.; Dewald, J.; Pietraβ, T. AIP Conf. Proceedings2005, 786, 275-278.
  • Shen, K.; Pietraβ, T. Solid State NMR 2006, 29, 125-131.
  • Kleinhammes, A.; Mao, S.; Yang, X.; Tang, X.; Shimoda, H.; Lu, J.; Zhou, O.; Wu, Y. Physical Review B2003, 68, 075418-1-075418-6.
  • Ghosh, S.; Ramanathan, V.; Sood, A. Europhysics Letters2004, 65, 678.
  • Clewett, C.; Pietraβ, T. J. Phys. Chem. B2005, 109, 17907-17912.
references cont
References (cont)
  • Mao, S.; Kleinhammes, A.; Wu, Y. Chemical Physics Letters2006, 421, 513.
  • Sekaneh, W.; Mrignayani, K.; Dettlaff-Weglikowska, U.; Veeman, W. Chemical Physics Letters2006, 428, 143.
  • Matsuda, K.; Hibi, T.; Kadowaki, H.; Maniwa, Y. Physical Rev. B2006, 74, 073415-1.
  • Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S. AIP Conference Proceedings2005, 786, 202.
  • Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S. Bernier, P. AIP ConferenceProceedings2003, 685, 131.
  • Schmid, M.; Goze-Bac, C.; Kramer, S.; Roth, S.; Mehring, M.; Mathis, C.; Petit, P. Physcial Review B2006, 74, 073416-1.
  • Shimoda, H.; Gao, B.; Tang, X.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Physical Review Letters 2002, 88, 015502-1.
  • Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P. AIP ConferenceProceedings2004, 723, 181.
  • Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P. AIP ConferenceProceedings2003, 772, 135.
  • Gao, C.; Liu, M.; Huang, H.; Yin, G.; Xu, Z. Hanneng Cailio2004, 12, 534.
  • Star, A.; Stoddart, J.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E.; Yang, X.; Chung, S-W.; Choi, H.; Heath, J. Angew. Chem. Int. Ed. 2001, 40, 1721.
  • Kitaygorodskiy, A.; Wang, W.; Xie, S.; Lin, Y.; Fernando, S.; Wang, X.; Qu, L.; Chen, B.; Sun, Y. J. Am. Chem. Soc. 2005, 127, 7517.
  • Owens, F.; Jayakody, J.; Greenbaum, S. Composites Sci. and Tech. 2006, 66, 1280.
  • Sun, Y.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L.; Yu, Y.; Carroll, D. Chem. Mater. 2001, 13, 2864.
  • Cahill, L.; Yao, Z.; Adronov, A.; Penner, J.; Moonoosawmy, K.; Kruse, P.; Goward, G. J.Phys. Chem. B2004, 108, 11412.
  • Ju, S.; Utz, M.; Luo, Z.; Papadimitrakopoulos, F. Polymer Preprints2005, 46, 209.
  • Qu, L.; Lin, Y.; Hill, D.; Zhou, B.; Wang, W.; Sun, X.; Kitaygorodskiy, A.; Suarez, M.; Connell, J.; Allard, L.; Sun, Y. Macromolecules2004, 37, 6055.
  • Putz, K.; Mitchell, C.; Krishnamoorti, R.; Green, P. J. Poly. Sci. B2004, 42, 2286.
  • Harris, P. A carbon nanotube page. http://www.personal.rdg.ac.uk/~scsharip/tubes.htm
  • Dresselhaus, M.; Dresselhaus, G.; Eklund, P.; Saito, R. Physics World online articlehttp://physicsweb.org/articles/world/11/1/9.
  • Chen, J.; Hamon, M. A.; Hu, H.; Cheng, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
  • Barraza, H.; Pompeo, F.; O’Rear, E.; Resasco, D. Nano Lett. 2002, 2, 797.
  • Islam, M.; Rojas, E.; Bergey, D.; Johnson, A.; Yodh, A. Nano Lett. 2003, 3 (2), 269.
  • Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J.; Balzano, L.; Resasco, D. J. Phys. Chem.B2003, 107, 13357.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
  • Umek, P.; Seo, J.; Hernadi, K.; Mrzel, A.; Pechy, P.; Mihailovic, D.; Forŕo, L. Chem.Mater.2003, 15, 4751.
  • Bahr, J.; Tour, J. Chem. Mater. 2001, 13, 3823.
  • Dyke, C.; Tour, J. Nano Lett.2003, 3, 1215.
  • Price, B.; Hudson, J.; Tour, J. J. Am. Chem. Soc.2005, 127, 14867.
  • Dyke, C.; Tour, J. J. Am. Chem. Soc.2003, 125, 1156.
references cont1
References (cont)
  • Hornak, J. The Basics of NMR 2006 online: http://www.cis.rit.edu/htbooks/nmr/.
  • Unknown NMR Spectroscopy theory: http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/nmr1.htm.
  • Nakashima, N.; Tomonari, Y.; Murakami, H. Chem. Lett. 2002, 638.
  • Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Shiral Fernando, K.; Kumar, S.; Allard, L.; Sun, Y-P. J. Am. Chem. Soc.2004, 126, 1014.
  • Banerjee, S.; Wong, S. J. Am, Chem. Soc. 2002, 124, 8940.
  • Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem. Int. Ed.2001, 40, 4002.
  • Liang, F.; Alemany, L.; Beach, J.; Billups, W. J. Am. Chem. Soc. 2005, 127, 13941.
  • Engtrakul, C.; Davis, M.; Gennett, T.; Dillon, A.; Jones, K.; Heben, M. J. Am. Chem.Soc.2005, 127, 17548.
  • Zhang, J.; Wang, G.; Shon, Y-S.; Zhou, O.; Superfine, R.; Murray, R. J. Phys. Chem. B.2003, 107, 3726.
  • Hemraj-Benny, T.; Wong, S. Chem. Mater.2006, 18, 4827.
  • Delgado, J.; de la Cruz, P.; Langa, F.; Urbina, A.; Casado, J.; Navarrete, J. Chem.Commun.2004, 2004, 1734.
  • Zhang, L.; Yang, J.; Edwards, C.; Alemany, L.; Khabasheka, V.; Barron, A. Chem.Commun.2005, 2005, 3265.
  • Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566.
  • Yinghaui, Z.; Pneg, A.; Carpenter, K.; Maguire, J.; Hosmane, N.; Takagaki, M. J. Am. Chem. Soc. 2005, 127, 9875.
  • Coleman, K.; Bailey, S.; Fogden, S.; Green, M. J. Am. Chem. Soc. 2003, 125, 8722.
  • Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J.; Garcia, H.; Langa, F. J. Phys. Chem. B2004, 108, 12691.
  • Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J.; Troiani, V.; Garcia, H.; Langa, F.; Palkar, A.; Echegoyen, L. J. Am. Chem. Soc. 2006, 128, 6626.