200 likes | 328 Views
Learn about standard and less common organometallic reaction types, such as ligand dissociation, oxidative addition, hapticity changes, and more. Understand electron count shifts, oxidation state changes, and key mechanisms.
E N D
Standard Organometallic Reaction Types • Ligand dissociation/association • Insertion/elimination • Oxidative addition/reductive elimination • s-bond metathesis • Isomerization • Nucleophilic or electrophilic attack at metal • Nucleophilic or electrophilic attack at ligand Reaction Types
Less Common Reaction Types • Hapticity changes • Single-electron oxidation/reduction • Bond homolysis • Electrocyclic reactions Reaction Types
What else is there? • Most organometallic reactions can be written in terms of series of these standard reactions. • Whether they really go like that is not always certain. • When looking for an acceptable mechanism, try to restrict yourself to the "standard steps". Reaction Types
Ligand dissociation/association • Electron count changes by -/+ 2 • No change in oxidation state • Dissociation easiest if ligand stable on its own (CO, olefin, phosphine, Cl-, ...) • Steric factors important Reaction Types
Insertion/elimination • Migratory insertion! • The ligands involved must be cis. • Electron count changes by -/+ 2 • No change in oxidation state • Olefins: 1,2-insertion, b-elimination • CO, RNC: 1,1-insertion, a-elimination Reaction Types
Oxidative addition/reductive elimination • Electron count changes by +/- 2(assuming the reactant was not yet coordinated) • Oxidation state changes by +/- 2 • Mechanism may be complicated Reaction Types
s-bond metathesis • Requires an empty site • Electron count does not change • Oxidation state does not change • Can often be viewed as an acid-base reaction Reaction Types
Isomerization • Movement of ligands around the metal • No change in electron count, oxidation state • Common for 3- and 5-coordinate species,less usual for 4-coordinate complexes,hardly ever for 6-coordinate octahedral complexes Reaction Types
Nucleophilic or electrophilic attack at metal • Nucleophilic: • requires an empty site • is basically ligand association • Electrophilic: • requires a metal-centered lone pair • no change in electron count • usually +2 in oxidation state Reaction Types
Nucleophilic or electrophilic attack at ligand • Nucleophilic: • requires an electron-poor ligand atom(acidic proton, coordinated C=X bond) • Electrophilic: • requires a ligand-centered electron pair(usually a lone pair, ligand p-bond, or M-C s-bond) • often reduces electron count by 2 Reaction Types
Hapticity changes • Often indenyl, dienes; sometimes for Cp • Changes electron count • Does not change oxidation state • Is usually a way for a systemto "make room" for another reactionor to avoid counts above 18-e Reaction Types
Single-electron oxidation/reduction • Changes both electron countand oxidation state by 1 • Usually by an added oxidant/reductantor electrochemically • Oxidized and reduced species typically differ widely in reactivity Reaction Types
Bond homolysis • Requires a weak M-C bond • Typically for: • heavier main-group metals • first-row transition metals in high oxidation states Reaction Types
Electrocyclic reactions • Can often be written as insertionsor oxidative additions • Most common for complexes bearing two coordinated alkenes or alkynesand in olefin metathesis • Usually change both electron count and oxidation state Reaction Types