280 likes | 377 Views
Explore femtoscopy and dynamics at intermediate energies through imaging techniques, understanding complex particle correlations, and predicting future developments. Learn from research on directional measurements, source functions, and secondary decays. Discover how imaging data and transport models provide valuable insights into the physics of fast and long-lived sources. Investigate correlation functions, emission times, and properties of different particle types at varying energies.
E N D
R~1-10fm ~10-21-10-15sec Femtoscopy and dynamics/ intermediate energies G. Verde, INFN, Italy • Imaging “Femtoscopy” • Transport models / Asy-EOS • Complex particle correlations • Our future
S.E. Koonin, PLB70 (1977) 43 S.Pratt et al., PRC42 (1990) 2646 r0 Kernel = • = Source function • If (not simultaneous) M. Lisa, PRL70 (1993) p-p correlations
FOPI Directional measurements at GSI energies • FOPI: central collisions @ 400 MeV/u • v ~ 2-3 fm • ALADiN: Target spectators Au+Au @ 1 GeV/u • < 20 fm/c Kotte et al., Eur. Phys. J.A 9 (1999) Schwarz, NPA 681 (2001) …these are short time scales
r0 Long-lived emissions at intermediate energies Secondary decays: enormous elongations (>104 fm/c…) Weak sensitivity to very long (Awes, Phys. Rev. Lett. 61, 1988) Directional correlations cannot tell the full story…
G. Verde et al., PRC65, 054609 (2002) Dynamical fast source (pre-equilibrium) Long-lived sources (evaporation, sec. decays, …) 1+R(q) q (MeV/c) Angle-averaged correlations: information content Ytotal=Dynamical + Sec. Decays Yfast + Yslow
G. Verde et al., PRC65, 054609 (2002) 4 p-p 3 1+R(q) Width (MeV/c) 2 p-p 1 q (MeV/c) Source size (fm) 1 0 20 40 60 80 100 Peak B 1+R(q) Width (MeV/c) Peak B Peak A d- d- Peak A Source size (fm) q (MeV/c) “Femtoscopes”… from the widths Angle-averaged
dynamical source (pre-eq.) 14N+197Au E/A=75 MeV evap. sources (sec. decays) Source size G. Verde et al., PRC65, 069604 (2002) P. Danielewicz, D.A. Brown Imaging at intermediate energies Ytotal=Dynamical + Sec. Decays Yfast + Yslow
What physics from imaging Sizes from width of peaks Relative contributions from long-lived emissions from integral of source (peak height) Handle on secondary decays! Entire source profile: probes of transport models (EOS, Asy-EOS,…)
Central Collisions Early comparisons to BUU failed: Long-lived emitting sources not handled properly D.O. Handzy et al., PRL 75 (1995) 2916 Probing transport properties? USE IMAGED SOURCE TO RENORMALIZE BUU SOURCES
Ar+Sc central G. Verde et al., Phys. Rev. C67, 034606 (2003) Imaged S(r) vs BUU S(r) E/A=120 MeV Imaging Data Models S(r) (fm-3) BUU red sNN BUU free sNN r (fm) Source shape sensitive to NN q e Imaging and transport Handzy, Lisa (1994)
Imaged sources S(r) Size (fm) S(r) Apart • Size increases with nr. of participants • Dynamical features r (fm) pp source systematics in central collisions • No E/A dependence What do transport models say about it?
Kr+Nb bred<0.4 E/A=100 MeV • Imaged sources reproduced by BUU with red NN Imaging data BUU free NN S(r) (a.u.) BUU red NN • E/A independence • Apart dependence Kr+Nb BUU E/A=120 MeV 100 MeV 70 MeV E/A=70 MeV Ar+Sc BUU E/A=150 MeV 100 MeV S(r) (a.u.) Probing dynamical early stages? Back-tracing p emission in BUU r (fm) Central collisions - Imaging vs BUU G. Verde, B. Barker,P. Danielewicz (2008)
112Sn+124Sn E/A=50 MeV bred=0-0.4 dN/dt PT/m > 0.2 PT/m > 0.3 time (fm/c) Protons emission time and transverse momentum Early Late
Early pp emitting source PT > 0.3 PT > 0.2 No PT gate pp sources S(r) (fm-3) r (fm) High PT: shorter emission times and smaller source sizes “Back-tracing” p emission as it is probed by HBT
Emitting source functions Emmission times of neutrons and protons Density dependence of symmetry potential in EOS IBUU: 52Ca+48Ca E/A=80 MeV Asy-Stiff Asy-Soft Asy-stiff Asy-Soft Vsym(MeV) S(r) (fm-3) 0 Asy-Stiff Asy-soft Lie-Wen Chen et al., PRL (2003), PRC(2005) r (fm) Emission times and Asy-EOS
Asy-stiff 1+R(q) Asy-soft q (MeV/c) CsI Si strips X-Y Angular resolution ! Isotopic effects on p-p imaging40,48Ca + 40,48Ca E/A=80 MeV Collaboration: MSU, IU, WU INFN Catania GANIL HiRA High angular resolution required: accessing low q-values…
Em. source more localized in N=Z than in N>Z 40Ca+40Ca N/Z=1 E/A=80 MeV central 40Ca+40Ca N/Z=1 S(r) (a.u.) 1+R(q) 48Ca+48Ca N/Z=1.4 S(r) (a.u.) 48Ca+48Ca N/Z=1.4 r (fm) S(r) (a.u.) prelim r (fm) Sensitivity to Esym(),stopping, NN, asy-transport (IBUU)… in progress q (MeV/c) r (fm) N/Z effects on p-p correlation functions
neutron-proton … in memory of Tano Lanzano’… Neutron-proton correlation functions Ghetti et al,PRC 69 (2004) 031605 Protons Neutrons Accessing emission chronology - high sensitivity to Asy-EOS Verde, Chbihi, Ghetti, Helgesson, EPJA 30, 2006
d-a p-p 1+R(E*) E*(MeV) a-6Li Beyond pp correlations… • Chronology and Hierarchy: different particles emitted at different times • Non-identical particle correlations relevant to pp correlations • IMF emission times: talk by E. De Filippo tomorrow stay tuned!
p-, p + A 8.0, 8.2, 9.2, 10.2 GeV/c Kr + Au Surf Bulk Miniball data, E. Cornell et al., PRL75 (1995) 1475 ISiS data, L. Beaulieu et al., PRL84 (2000) 5971 From surface to bulk emission (Liquid-gas phase transition?) Emission time decreases with velocity Evolutionary fragment emission mechanisms (EES predictions) IMF emission times
d- correl 1+R(q) Distortions due to position/momentum correlations Second peak attenuated q (MeV/c) Light complex particles • Dominated by nuclear short-range interaction
Thermal Position dependent velocity fields: q (MeV/c) r (fm) r-q correlations! (r-P correlations!) • S = S(r,q) • Line-shape of R(q) distorted and depending on T Thermal+Collective q (MeV/c) r (fm) Collective motion and correlations G. Verde et al., Physics Letters B653, 12 (2007)
d- p-p Xe+Au E/A=50 MeV bred<0.3 Ed>40MeV E>45MeV Ep>30 MeV 1+R(q) 1+R(q) r0=5.6 fm r0=2.2 fm fast fast No Teffcorrection 20<Ed<40MeV 25<E<45MeV 15 <Ep<30 MeV 1+R(q) 1+R(q) r0=9.4 fm r0=6 fm medium medium Small Teff correction 0 <Ep<15 MeV 0<Ed<20MeV 0<E<25MeV 1+R(q) 1+R(q) r0=14 fm r0=9 fm slow slow Large Teff correction q (MeV/c) q (MeV/c) dvs pp radii
16 pp 14 14.00 12 d 10 9.40 9.00 Sizes (fm) 8 6 6.00 5.60 4 2.20 2 0 Ecm gates Sizes: pp vs d Xe+Au E/A=50 MeV central d- sources more localized than p-p sources Different particles emitted at different time stages (hierarchy) EES scenario (W. Friedmann)
10C* ---> p+p+ 8B*---> p+7Be F. Grenier, A. Chbihi, R. Roy, G. Verde et al., NPA, in print T. Wanpeng et al., PRC (2004) C+Mg LASSA data Relative heights of peak heights sensitive to spin of 8Be states INDRA Ek(MeV) Probe sequential decays 10C-->9B+p vs 10C-->6Be+ HIC as a spectroscopic tool • Several unbound states are produced in each collision - reconstructed with correlations
Conclusions • Femtoscopy and imaging • Sizes, contributions pre-eq/evap • Probing transport theories and back-tracing particle emissions • Isotopic effects (N/Z) to access Asy-EOS - preliminary results on Ca+Ca data • Extend to several particle species - reveal hierarchy and chronology
Active projects • Chimera and Indra + Silicon strips (INFN, GANIL) improving angular resolution • Fazia (Italy, France, Poland, Romania, Spain, UK, India) - 4 detector with high isotopic resolution, PSA and digitalization, low thresholds - well suited to future Spiral2 experiments • HiRA, LASSA+First (USA) presently exploring isospin and HBT physics
Acknowledgements • NSCL/MSU(P. Danielewicz, W.G. Lynch, M.B. Tsang, Wanpeng Tan, K. Gelbke, B. Barker, REU students) • HiRA groups (IU, MSU, WU) • LLNL (D.A. Brown) • INDRA group (A. Chbihi, J. Frankland et al.) • Laval University(F. Grenier, R. Roy)