- By
**emily** - Follow User

- 131 Views
- Updated On :

Introduction to Scheme. Scheme. Meta-language for coding interpreters “clean” semantics Scheme = LISP + ALGOL simple uniform syntax; symbols and lists block structure; static scoping expression : evaluated for its value statement : evaluated for its effect Dynamic type checking

Related searches for Introduction to Scheme

Download Presentation
## PowerPoint Slideshow about 'Introduction to Scheme' - emily

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Introduction to Scheme

L2Scm

Scheme

- Meta-language for coding interpreters
- “clean” semantics

- Scheme = LISP + ALGOL
- simple uniform syntax; symbols and lists
- block structure; static scoping
- expression : evaluated for its value
- statement : evaluated for its effect

- Dynamic type checking
- flexible but inefficient (rapid prototyping)

L2Scm

Expressions Variables

Literals Variables Procedure calls

- Literals
- numerals(2), strings(“abc”), boolean(#t), etc.

- Identifier represents a variable. Variable reference denotes the value of its binding.
x

5

ref

L2Scm

Expressible vs Denotable values

- Booleans are expressible in (early) FORTRAN, but not denotable.
- Functions are denotable in Pascal/C, but are not expressible.
- In (functional subset of) Scheme, both value spaces are identical.
- In (full) Scheme, variable references (pointers) are denotable but not expressible.

L2Scm

Scheme Identifiers

- E.g., y,x5,+,two+two,zero?, etc
- (Illegal) 5x,y)2,ab c, etc
- Identifiers
- reserved keywords
- variables
- pre-defined functions/constants
- ordinary

- functions = procedures

L2Scm

Procedure Call (application)

- (operator-expr operand-expr ...)
- prefix expression (proc/op arg1 arg2 arg3 ...)

- Order of evaluation of the sub-expressions is “explicitly” left unspecified by Scheme.
- cf. C is silent about it.
- cf. Java specifies a left to right processing.
(+ x (p 2 3))

((f 2 3) 5 6)

L2Scm

Special Forms Conditional

- Definition
- (define <var> <expr>)
> (define false #f)

- (define <var> <expr>)

- (if <test> <then> <else>)
> (if (zero? 5) 0 #t)

> (if '() 'emptyList'never)

emptyList

L2Scm

Data Types

- values, operations, canonical representation
- Type-checking
- static : compile-time : efficient
- dynamic : run-time : flexible

- numbers: +, -, *, number?, =, etc.
- booleans: #t, #f, boolean?, etc.
- strings: string?, string->list, etc.

L2Scm

Symbols

- Identifiers treated as primitive values.
- Distinct from identifiers that name variables in the program text.
- Distinct from strings (sequence of characters).

- Primitive operations
quote

symbol?

- Facilitates meta-programming

L2Scm

Lists

- Ordered sequence of elements of arbitrary types (Heterogeneous)
- operations
- car, cdr, cons, null?, ...
- list, append, ...
- cadr, caadr, caddddr, …
(cadar X) = (car (cdr (car X)))

L2Scm

Pairs: Expression, Internal Representation and Print form

(cons 'a 'b)

(cons 'a (cons 'b '()) )

= (a . b)

b

a

= (a . (b . ()) ) = (a b)

()

a

b

L2Scm

Domain Equations for defining S-Expressions and Lists

Sexpr = Atoms

U

SexprXSexpr

List = ()

U

SexprXList

L2Scm

Equivalence : Syntactic vs Semantic

(eq? (cons 3 '()) (cons 3 '()))

#f

(define a (cons 3 '()))

(define b (cons 3 '()))

(eq? a b)

#f

(define c a)

(eq? a c)

#t

L2Scm

Equivalence : Syntactic vs Semantic

(equal? (cons 3 '()) (cons 3 '()))

#t

(equal? (make-vector 5 'a)

(make-vector 5 'a))

#t

(equal? (lambda(x)x) (lambda(y)y))

#f

Formallyunspecified

L2Scm

Vectors

- Both records and arrays provide random access to components. However, records are heterogeneous, while arrays are homogeneous.
- Vectors are heterogeneous structures that provide random access to components using a computable index.

L2Scm

- Constructors and accessors
(define v (vector 1 (+ 1 2)))

#(1 3)

(vector-ref v 0)

1

(vector-length v)

2

- Index is 0-based.

L2Scm

Procedures

- In Scheme, procedures are first-class objects. That is, they may be (i) passed to procedures or (ii) returned from procedures or (iii) stored in a data structure.
(procedure? append)

#t

(if (procedure? 3) car cdr)

#<procedure>

L2Scm

(( (if (procedure? procedure?)

car cdr)

(cons cdr car))

'(list append))

=

( (car (cons cdr car))

'(list append))

=

(cdr '(list append))

=

(append)

L2Scm

Apply-function

(apply cons '( x (y z)))

= (cons 'x '(y z))

= (x y z)

(apply f '(a1 a2 ... an))

= (f 'a1 'a2 ... 'an)

(apply <func> <list-of-args>)

L2Scm

Apply-function

- Apply-function is not compelling if the function is of fixed arity and statically known.
- Apply-function is indispensable if we wish to define variable arity function or the function will be computed dynamically.
- Apply-function enables us to unify functions of different arities, and is an important component of an interpreter.

L2Scm

(apply apply

(list procedure?

(list apply)))

= (apply apply

[proc?-fn [ apply-fn ] ]

)

= (applyproc-fn

[apply-fn] )

= (procedure? apply)

= #t

L2Scm

Anonymous Functions

(lambda<formals-list>

<body-expr>)

E.g.,

((lambda (n) (+ n 2)) (+ 1 4) ) = 7

- Evaluate actual argument expressions
- Bind these values to corresponding formals in formals-list
- Evaluate body expression (static scoping)

L2Scm

Variable Arity Procedures

(+ 1 2 3)

(append '(1 (p q)) '() '(a b))

(list 1.2 3/4 5)

(lambda<formal> <body>)

- <formal> is bound to the list of actual argument values supplied in a call.

L2Scm

(define mul

(lambda x

(if (null? x)

1

(* (car x)

(applymul

(cdrx))

)

)) ; 1 is identity w.r.t *

); assuming * is binary

(mul 2 (+ 2 2) 5)

L2Scm

Binding constructs in Scheme l-function application let-constructs let let* letrec

- define
- binds value to a name.

- binds formal parameters to actual argument values.

- introduces local bindings

L2Scm

let-construct

( let

( (var1 exp1) … (varn expn))

exp

)

- exp1 to expn are evaluated in the surrounding context.
- var1,…,varn are visible only in exp.
- (let ( (x 2) (y 7) ) y)
- 7

L2Scm

- (let ( (x y) (y 7) ) y)
- *error* “y” undefined
- (define y 5)
- (let ( (x y) (y 7) ) y)
- 7
- (let ( (x y) (y 7) ) x)
- 5
- (let ( (y 7) (x y) ) x)
- 5 (not 7)

L2Scm

- (define y 5)
- (let ( (y 7) (x y) ) x)
- 5
- (let ( (y 7) )
(let ( (x y) ) x) )

- 7
- (let* ( (y 7) (x y) ) x)
- 7
- let* abbreviates nested-lets.
- Recursive and mutually recursive functions cannot be defined using let and let*.

L2Scm

letrec-construct

( letrec

( (var1 exp1) … (varn expn))

exp

)

- var1,…,varn are visible in exp1 to expn in addition to exp.
- (letrec ( (x (lambda() y))
(y (lambda() x)) )

x

)

L2Scm

letrec-construct

- (letrec ( (f (lambda(n) (if (zero? n) 1 (f (- 1 n)) )) ) )
(f 5)

)

- 1
- (letrec ( ( f (lambda () g) )
( g 2) )

( f )

)

- 2

L2Scm

boolean connectives

(or test1 test2 … testn)

(and test1 test2 … testn)

- or and and are not Scheme procedures.
- They use short circuit evaluation rather than traditional call-by-value.

L2Scm

(test1 exp1)

(test2 exp2)

…

(testn expn)

(else exp)

)

(case key

(keylist1 exp1)

(keylist2 exp2)

…

(keylistn expn)

(else exp)

)

Branching constructsL2Scm

Download Presentation

Connecting to Server..