1 / 26

Brain Cancer Mortality in the United States

Brain Cancer Mortality in the United States. Joint work with: Zixing Fang, UCLA David Gregorio, Univ Connecticut. U.S. Brain Cancer Mortality 1986-1995. deaths rate* (95% CI) Children (age <20): 5,062 0.75 (0.66-0.83) Adults (age 20+): 106,710 6.0 (5.8-6.2)

elia
Download Presentation

Brain Cancer Mortality in the United States

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brain Cancer Mortalityin the United States Joint work with: Zixing Fang, UCLA David Gregorio, Univ Connecticut

  2. U.S. Brain Cancer Mortality1986-1995 deaths rate* (95% CI) Children (age <20): 5,062 0.75 (0.66-0.83) Adults (age 20+): 106,710 6.0 (5.8-6.2) Adult Women: 48,650 4.9 (4.7-5.0) Adult Men: 58,060 7.2 (7.0-7.5) * annual deaths / 100,000

  3. Brain Cancer • Known risk factors: • High dose ionizing radiation • Selected congenital and genetic disorders • Explains only a small percent of cases. • Potential risk factors: • N-nitroso compounds?, phenols?, pesticides?, polycyclic aromatic hydrocarbons?, organic solvents?

  4. Adjustments All subsequent analyses where adjusted for: • Age • Gender • Ethnicity (African-American, White, Other)

  5. Brain Cancer Mortality, Children 1986-1995

  6. Cuzick-Edward’s Test: Children k p-value 200 0.04 500 0.13

  7. Tango’s Excess Events Test:Children l p-value 1000 0.005 2000 0.06 5000 0.21 10000 0.29

  8. Spatial Scan Statistic, Children

  9. Children: Seven Most Likely Clusters Cluster Obs Exp RR p= 1. Carolinas 86 51 1.7 0.24 2. California 16 4.9 3.3 0.74 3. Michigan 318 250 1.3 0.74 4. S Carolina 24 10 2.5 0.79 5. Kentucky-Tenn 127 88 1.4 0.79 6. Wisconsin 10 2.4 4.1 0.98 7. Nebraska 12 3.6 3.3 0.99

  10. Conclusions: Children Some evidence of global spatial clustering, but rather weak. No statistically significant clusters detected. Any part of the pattern seen on the original map may be due to chance.

  11. How About Adults?

  12. Brain Cancer Mortality, Adults 1986-1995

  13. Cuzick-Edward’s k-NN: All Adults k p-value 4000 0.0001 10000 0.0001

  14. Tango’s EET: All Adults l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001

  15. Spatial Scan Statistic: Adults

  16. Brain Cancer Mortality, Adults 1986-1995

  17. Cuzick-Edward’s: Women k p-value 1500 0.0001 3000 0.0001

  18. Tango’s EET: Women l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001

  19. Spatial Scan Statistic, Women

  20. Women: Most Likely Clusters Cluster Obs Exp RR p= 1. Arkansas et al. 2830 2328 1.22 0.0001 2. Carolinas 1783 1518 1.17 0.0001 3. Oklahoma et al. 1709 1496 1.14 0.003 4. Minnesota et al. 2616 2369 1.10 0.01 10. N.J. / N.Y. 1809 2300 0.79 0.0001 11. S Texas 127 214 0.59 0.0001 12. New Mexico et al. 849 1049 0.81 0.0001

  21. Cuzick-Edward’s: Men k p-value 2000 0.0001 4000 0.0001

  22. Tango’s EET: Men l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001

  23. Spatial Scan Statistic: Men

  24. Men: Most Likely Clusters Cluster Obs Exp RR p= 1. Kentucky et al. 3295 2860 1.15 0.0001 2. Carolinas 1925 1658 1.16 0.0001 3. Arkansas et al. 1143 964 1.19 0.001 4. Washington et al. 1664 1455 1.14 0.003 5. Michigan 1251 1074 1.17 0.005 11. N.J. / N.Y. 2084 2615 0.80 0.0001 12. S Texas 157 262 0.60 0.0001 13. New Mexico et al. 1418 1680 0.84 0.0001 14. Upstate N.Y. et al. 1642 1895 0.87 0.0001

  25. Conclusions: Adults Strong evidence of global spatial clustering. It is possible to pinpoint specific areas with higher and lower rates that are statistically significant, and unlikely to be due to chance. The exact borders of detected clusters are uncertain. Similar patterns for men and women.

  26. Conclusion: General Tests for spatial randomness are very useful additions to cancer maps, in order to determine if the observed patterns are likely due to chance or not. Different tests provide complementary information.

More Related