690 likes | 917 Views
3 D Symmetry (2 weeks). Next we would move a step further into 3D symmetry. Leonhard Euler :. http://en.wikipedia.org/wiki/Leonhard_Euler. Google search: Euler. Spherical trigonometry. Small circle R <1. For convenience, set R = 1. Great circle (GC), R =1. o.
E N D
3D Symmetry (2 weeks)
Next we would move a step further into 3D symmetry. Leonhard Euler : http://en.wikipedia.org/wiki/Leonhard_Euler Google search: Euler
Spherical trigonometry Small circle R<1 For convenience, set R = 1 Great circle (GC), R=1 o Distance: AOB = (GC) A B P Pole90o to arc AB. o A B
c B A arc BC = a arc AC = b arc AB = c. GC b a C Spherical Angles BAC =B’OC’ A GC o B C ? B’OC’
Polar triangle A GC A A, pole of arc BC B, pole of arc AC C, pole of arc AB GC B C B C ABC and ABC are mutually polar! Proof: B: pole of arc AC B is 90o away from point A. C: pole of arc AB C is 90o away from point A. A:pole of arc BC. Similarly, B: AC, C: pole of arc AB.
Proof: BAC = , arc BC = a, + a = . A B A o Q B C A C B C a P Q B : pole of arc AC arc BQ = /2 C : pole of arc AB arc CP = /2 arc BQ + arc CP = = (arc BP+ arc PQ) + (arc PQ+ arc QC) = (arc BP+ arc PQ+ arc QC) + arc PQ = a + arc PQ
Law of cosines Plane geometry length b c A B C angle a Spherical geometry
(3) O O 90o (2) (4) a (1) b 1 1 y u w z y z u u (4) (1) (3) b v o (1)= tana (3)= tanb a 1/(2)= cosa (2) = seca 1/(4)= cosb (4) = secb (2) Unit circle (From uyz) (From oyz) http://en.wikipedia.org/wiki/Spherical_law_of_cosines
Combination of two rotation operations: A C B A : (1) (2) B : (2) (3) 2 R 1 R 3 R (1) and (3) relation? c 3-D: translation, reflection, rotation, and inversion. must be crystallographic
A Locate the position of axis C B C A c B c A B b a A B b a C c c Euler construction: N C’ M’ A symmetry element is the locus of a point that is left unmoved by an operation. B A A: AMAM’. B: BNBN’. C C (the point unmoved). OC: the axis N’ M
(1) A: leave A unmoved. (2) B: move A to A’. A B /2 /2 A’ ABC = A’BC = /2 AB = A’B ABC = A’BC ACB = A’CB /2 C N’ M /2 A c B /2 b a The law of cosine (spherical trigonometry) /2 C
180o-/2 A c B 180o-b /2 180o-a /2 /2 b a 180o-/2 180o-/2 180o-c C Law of cosine to the polar triangle
Combination to be tested B 1 2 3 4 6 A 111 1 112 113 114 116 212 222 2 213 223 214 224 216 226 313 323 333 3 314 324 334 316 326 336 414 424 434 444 4 416 426 436 446 6 616 626 636 646 666
/2 /2 /2 Axis at A, B, or C , , or 1-fold 2-fold 3-fold 4-fold 6-fold 360o 180o 120o 90o 60o 180o 90o 60o 45o 30o -1 0 1/2 1/21/2 31/2/2 0 1 31/2/2 1/21/2 1/2
/2 Case: 11n A c B A: 1, = 360o, cos( /2) = -1; sin( /2) = 0 /2 b a B: 1, = 360o, cos( /2) = -1; sin( /2) = 0 /2 C C: n, = 360o /n , cos( /2); sin( /2) 180o A c B 180o b a 180o/n C None exist!
/2 Case: 22n A c B A: 2, = 180o, cos( /2) = 0; sin( /2) = 1 /2 b a B: 2, = 180o, cos( /2) = 0; sin( /2) = 1 /2 C C: n, = 360o /n , cos( /2); sin( /2) 90o A c B 90o b a 180o/n C
C Angle between A and B axis b a 222 B A 223 B A 224 B A 226 B A What are a and b?
A: 2, = 180o, cos( /2) = 0; sin( /2) = 1 B: 2, = 180o, cos( /2) = 0; sin( /2) = 1 C: n, = 360o /n , cos( /2); sin( /2) a = 90o. b = 90o.
C C C C B B B 45o 30o 60o 90o B A A A A 222 223 224 226
Case: 23n A: 2, = 180o, cos( /2) = 0; sin( /2) = 1 90o A c B B: 3, = 120o, cos( /2) = 0.5; sin( /2) = 30.5/2 60o b C: n, = 360o /n , cos( /2); sin( /2) a 360o/n C 233 234 236 None exist The rest of combination does not exist!
Case: 233 A: 2, = 180o, cos( /2) = 0; sin( /2) = 1 B: 3, = 120o, cos( /2) = 0.5; sin( /2) = 30.5/2 C: 3, = 120o, cos( /2) = 0.5; sin( /2) =30.5/2 a = 70o32. b = 54o44.
B 70o32’ z C 000 54o44’ y A x 54o44’ 233 Angle between A and B is Angle between A and C is Angle between B and C is
Case: 234 A: 2, = 180o, cos( /2) = 0; sin( /2) = 1 B: 3, = 120o, cos( /2) = 0.5; sin( /2) = 30.5/2 C: 4, = 90o, cos( /2) = 1/20.5; sin( /2) = 1/20.5 a = 54o44. b = 45o.
A 35o16’ B z 45o 000 y 54o44’ x C 234 Angle between A and B is Angle between A and C is Angle between B and C is
Geometry of the permissible nontrivial combination of rotations: Combination 2A = c 2B = a 2C = b 222 223 224 226 233 234 180o 180o 180o 180o 180o 180o 90o 60o 45o 30o 54o44 35o16 180o 180o 180o 180o 120o 120o 90o 90o 90o 90o 70o32 54o44 180o 120o 90o 60o 120o 90o 90o 90o 90o 90o 54o44 45o
International symbol 222 322 422 622 (1) (1) (2) (2) (3) (3) 32(2) 22 operation is basically on the plane! Just like 3m(m) Only one kind of 2 fold rotation symmetry
n22 222 32(2) 422 622 DnD2D3D4D6 Schonllies notation dihedral different dihedral angle 233 23 is enough to specify the symmetry! = 23 Schonllies notation: T Tetrahedral
International symbol http://en.wikipedia.org/wiki/Tetrahedron
International symbol 35o16’ 45o 54o44’ Schonllies notation: O Octahedron 234 or 432 http://en.wikipedia.org/wiki/Octahedron
11 axial combinations 1 2 3 4 6 222 322 422 622 233 432 11 axial combinations + Extender 222 + 45o, 2-fold rotation 4-fold rotation extender
Ways to add m: horizontal 422 n n diagonal for Dn, T, O vertical horizontal m vertical m Not forCn Extender: v, h, d, ! + extender create new rotation axis!
1 2 3 4 6 222 32 422 622 23 432 Cnv, Dnv Tv, Ov v h d Cnh, Dnh Th, Oh See reading crystal4.pdf Dnd Td, Od http://ocw.mit.edu/courses/materials-science-and-engineering/3-60-symmetry-structure-and-tensor-properties-of-materials-fall-2005/readings/crystal4.pdf Cni, Dni Ti, Oi
1 2 3 4 6 222 32 Cnv, Dnv Tv, Ov v h d m 2mm 3m 4mm 6mm Cnh, Dnh Th, Oh m Dnd Td, Od - - - - - Cni, Dni Ti, Oi
?: (1) (3) (1) R (2) R at the point of intersection 1 1 1 (3) L 1 1 1 up R R down L L Extender:
(1) No inversion (2) (3) Use inversion as an extender! (1) (1) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3) New two step operations Roto-inversion
(1) (1) (1) (2) (1) (3) (1) (4) (1) (5) (1) (6) (1) (6) (5) (2) (3) (4)
Sphenoid (Greek word for axe) (1) (2) (1) To (2) (2) To (3) (4) (3) To (4) (3) (4) To (1) Equal length The rest four: equal length. Not tetrahedron
(2) R (1) R (2) R (1) R Roto-reflection? (3) L (3) L Roto-reflection
R(D) L(U) R(U) L(D) R (D) R(U) + h R (D) R(D) L(U) R (U) R(U) L(D) 222 222
R (2) R (1) R R (4) L L + d (3) L L R R R R 222 (1) (2): A (1) (3): or (1) (4): R R R R
R R + d R R R R 32 R R L L L L R R R R L L
3L 1R 2R Add Add v S4v R(U) L(D) R(D) L(U) R(U) R(D) R(D) L(U) R(U) L(D) R(D) R(U) + h R(U) R(D) R(U) L(D) R(D) L(U) R(D) R(U) R(D) L(U) R(U) L(D)
all up. all down. up T 23 down Add a horizontal mirror plane T 23 Th Create an inversion center inversion
R R L L Inner circle + h Td L L R R
3D crystallographic point group (Buerger’s book) Euler’s construction: pg. 35-43 Some combination theorems: chapter 6 Points group: pg: 59-68 2D lattices: chapter 7 (pg. 69-83)
3D lattice: Reading crystal7.pdf Oblique (symmetry 1) + General Triclinic Primitive
Oblique (symmetry 2) + projection 4 choices: