1 / 22

Example: Full-bridge parallel resonant inverter 2. Steady-state solution

Example: Full-bridge parallel resonant inverter 1. Construct steady-state plus small-signal phasor model. Example: Full-bridge parallel resonant inverter 2. Steady-state solution. Example: Full-bridge parallel resonant inverter 3. Small-signal perturbation in output phasor.

craig-howe
Download Presentation

Example: Full-bridge parallel resonant inverter 2. Steady-state solution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example: Full-bridge parallel resonant inverter1. Construct steady-state plus small-signal phasor model

  2. Example: Full-bridge parallel resonant inverter2. Steady-state solution

  3. Example: Full-bridge parallel resonant inverter3. Small-signal perturbation in output phasor

  4. Example: Full-bridge parallel resonant inverter3. Small-signal perturbation in output phasor

  5. Recovering the actual output envelope

  6. Recovering the actual output envelope

  7. Recovering the actual output envelope

  8. Recovering the actual output envelope

  9. Simulation using SPICE

  10. SPICE inductor model

  11. SPICE models

  12. SPICE models

  13. Example: Full-bridge parallel resonant inverterSPICE-compatible model

  14. Recovering the actual output envelope in SPICE

  15. Recovering the actual output envelope in SPICE

  16. Recovering the actual output envelope in SPICE

  17. Recovering the actual output envelope in SPICE

  18. Recovering the actual output envelope in SPICE

  19. parallel resonant inverter *PARAMETERS AND NODESETS *main circuit parameters .param L=627u .param Cp=7.9n .param Vg = 150 .param R=400 .param fs=86k .param ws=540k; .param Vin = 191 *steady-state switching frequency .nodeset v(w)=540k *voltages and currents .nodeset i(L_re)=0.5209 .nodeset i(L_im)=-0.8382 .nodeset v(out_re)=-92.99 .nodeset v(out_im)=-176.5 .nodeset v(outi)=0.6536 .nodeset v(outv)=199.5 .nodeset v(in_im)=0 .nodeset v(in_re)=191 .nodeset v(xl_im)=0 .nodeset v(xl_re)=191 .nodeset v(in_rex)=191 .nodeset v(out_imdum)=0 .nodeset v(out_redum)=0 *EXTRACT ENVELOPE Evout outv 0 value {sqrt(v(out_re)*v(out_re)+v(out_im)*v(out_im))} Rvout outv 0 100 Eiout outi 0 value {sqrt(i(vdum_re)*i(vdum_re)+i(vdum_im)*i(vdum_im))} Riout outi 0 100 *analysis setup .op .ac dec 201 1000 300k *.tran 1n 500u 0 0.1u .probe .END *CIRCUIT CONSTRUCTION *real part V_re in_rex 0 dc 191 ac 0 V_rex in_re in_rex sin(0 0 1000 0 0) ac 0 L_re in_re xl_re {L} EXL_re xl_re out_re value {-v(w)*{L}*i(EXL_im)} Cp_re out_re 0 {Cp} Gcp_re out_re 0 value {-v(w)*{Cp}*v(out_im)} Rp_re out_re 0 10g *add dummy voltage to measure current vdum_re out_re out_redum 0 R_re out_redum 0 {R} *imaginary part V_im in_im 0 dc 0 ac 0 L_im in_im xl_im {L} EXL_im xl_im out_im value {v(w)*{L}*i(EXL_re)} Cp_im out_im 0 {Cp} Gcp_im out_im 0 value {v(w)*{Cp}*v(out_re)} Rp_im out_im 0 10g *add dummy voltage to measure current vdum_im out_im out_imdum 0 R_im out_imdum 0 {R} *frequency perturbation vw w 0 {ws} ac 1 Rph w 0 1meg

  20. Genv,ws(s) from SPICE

  21. Genv,ws(s) from MATLAB

  22. Genv,ws(s) from MATLAB

More Related