89 Views

Download Presentation
##### Linear Programming

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Linear Programming**Integer Linear Models**When Variables Have To Be Integers**• Example – one time production decisions • Fractional values make no sense • But if ongoing process, fractional values could represent work in progress • Example -- building houses or planes, or scheduling crews • Binary variables • Restricted to be 0 or 1 • Example – Is a plant built?**Types of Integer Programs (ILP)**• All Integer Linear Programs (AILP) • All the decision variables are required to be integers • Mixed Integer Linear Programs (MILP) • Only some of the variables are required to be integers • Binary Integer Linear Programs (BILP) • Variables are restricted to be 0 or 1**Example**• Boxcar Burger will build restaurants in the suburbs and downtown • Suburbs • Profit $12000/day • $2,000,000 investment • Requires 3 managers • Downtown • Profit $20000/day • $6,000,000 investment • Requires 1 manager • Constraints • $27,000,000 budget • At least 2 downtown restaurants • 19 managers available**Decision Variables/Objective**• X1 = Number of restaurants built in suburbs • X2 = Number of restaurants built downtown MAX Expected Daily Profit MAX 12X1 + 20X2(in $1000’s) MAX Expected Daily Profit**Constraints**In $1,000,000’s • Cannot invest more than $27,000,000 • At least 2 downtown restaurants • Number of managers used cannot exceed 19 Total Amount Invested Cannot Exceed 27 27 2X1 + 6X2 ≤ # downtown restaurants Must be At least 2 2 X2 ≥ # Managers used Cannot Exceed 19 19 3X1 + 1X2 ≤**The Complete Model**MAX 12X1 + 20X2 (in $1000’s) s.t. 2X1 + 6X2 27 (Budget) X2 2(Downtown) 3X1 + X2 19 (Managers) Both X’s 0 Both X’s INTEGER!**Solving ILP’s Using SOLVER**• The only change in SOLVER is to add the integer constraints • In the Add Constraints dialogue box, highlight the cells required to be integer and choose “int” from the pull down menu for the sign**Optimal**Build 4 Suburban Restaurants Build 3 Downtown Restaurants Average Daily Profit $108,000**General Facts About Integer Models**• The solution time to solve integer models is longer than that of linear programs • Because many linear programs are solved en route to obtaining an optimal integer solution • For maximization models, the optimal value of the objective function will be less (or at least not greater than) the value for the equivalent linear model • Because constraints have been added – the integer constraints • There is no sensitivity analysis • Because the feasible region is not continuous**Review**• When to use integer models • Solution time • No sensitivity analysis • Objective function value cannot improve • SOLVER solution approach