1 / 20

TITRATION CURVES

NEUTRALIZATION ANALYSIS. TITRATION CURVES. K (A) + (R) (P) analyte titrant product. Outline. NEUTRALIZATION ANALYSIS. Introduction Titrants Titration curves End point detection Applications. Important points and regions : 2 points: before titration (at 0%) I. [ A ]

corbin
Download Presentation

TITRATION CURVES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NEUTRALIZATION ANALYSIS TITRATION CURVES K (A) + (R)(P) analytetitrant product Outline NEUTRALIZATION ANALYSIS • Introduction • Titrants • Titration curves • End point detection • Applications Important points and regions: 2points:before titration (at 0%) I. [A] at the end point (at 100 %)III. [A]= [R] 2 regions: before the end point (0.00..1 – 99.99…%) II.[A] + [P] after the end point (100.00..1 – ∞) IV. [P]+ [R] Titration curves: 1.Strong acidwith strong base,Strong basewithstrong acid 2.Weak acidwithstrong base,Weak basewithstrong acid 3.Polyprotic acidwith strong base

  2. TITRATION CURVES 1.Strong acidwith strong base,Strong basewithstrong acid Outline NEUTRALIZATION ANALYSIS HCl + NaOH Cl– + Na+(H2O) acid1 + base2 base1 + acid2 (very weak) e.g. • Introduction • Titrants • Titration curves • End point detection • Applications • At the start: [H+] = [H3O+]=[HCl]0 [OH–] = [NaOH]0 pH = – lg [HCl]0 pOH = – lg [NaOH]0pH = 14 – pOH • Before the end point: • [H+] = [H3O+]=[HCl]unreacted [OH–] = [NaOH]unreacted • pH = – lg [HCl]unreacted pOH = – lg [NaOH]unreacted • At the end point: • [H+] ≡ [OH–] • KW = 10–14pH ≡ 7 • After the end point: • [OH–] = [NaOH]excess [H+] = [H3O+]=[HCl]excess • pOH = – lg [NaOH]excesspH = – lg [HCl]excess

  3. TITRATION CURVES Titration curves: 1. Strong acidwith strong base,Strong basewith strong acid 2.Weak acidwithstrong base,Weak basewithstrong acid 3.Polyprotic acid with strong base EFFECTS ON THE TITRATION CURVE: 1. Effect of the temperature: Outline 25°C[H+]·[OH–] = Kw = 10–14Neutr. point: pH = 7 NEUTRALIZATION ANALYSIS 100°C[H+]·[OH–] = Kw = 10–12Neutr. point: pH = 6 • Introduction • Titrants • Titration curves • End point detection • Applications 0 100

  4. EFFECTS ON THE TITRATION CURVE 2. Dependence on the initial concentrations (e.g. [HCl]): Outline pH change around the end point NEUTRALIZATION ANALYSIS ΔpH 3– 11 4 – 10 5 – 9 6 – 8 • Introduction • Titrants • Titration curves • End point detection • Applications 100 0

  5. EFFECTS ON THE TITRATION CURVE 3. Dependence on the acid strength (dissociation constants): A. Weak acidwith strong bases , 0 100 Outline e.g.10–1 NCH3COOHis titrated with NaOH (Ka = 2x10–5) NEUTRALIZATION ANALYSIS • Introduction • Titrants • Titration curves • End point detection • Applications ΔpH pKInd ≈ 9→ PHENOLPHTALEIN B.Weak basewithstrong acid e.g.10–1 NNH4OH is titrated withHCl (Kb = 2x10–5) ΔpH pKInd ≈ 5 → METHYL RED

  6. TITRATION CURVES II. Weak acidwith strong base Weak basewithstrong acid e.g.Titration ofCH3COOHwith NaOH , Titration ofNH4OH withHCl: I. At the start: pH Weak acid Weak base II. Before the end point: pH Buffer (acid / salt) Buffer (base / salt) Outline NEUTRALIZATION ANALYSIS III. At the end point: pH • Introduction • Titrants • Titration curves • End point detection • Applications Hydrolysing salt (Brönsted base) Hydrolysing salt (Brönsted acid) IV. After the end point: pH Excess of strong acid Excess of strong base [H+] = Cexcess acid [OH–] = Cexcess base [OH–] = [NaOH]excess [H+] = [HClexcess

  7. TITRATION CURVES III. Polyprotic acidwith strong base e.g.Titration of H3PO4with NaOH • H3PO4 + OH–H2PO4– + H2O Ka1 = 7x10–3 • H2PO4–+OH– HPO42–+H2O Ka2 = 6x10–8 • 3.HPO42–+ OH– PO43– + H2O Ka3 = 10–12 Outline NEUTRALIZATION ANALYSIS • Introduction • Titrants • Titration curves • End point detection • Applications

  8. ACID / BASE INDICATORS • Azo-compounds Genearal structure: Outline NEUTRALIZATION ANALYSIS Mechanism: • Introduction • Titrants • Titration curves • End p. detection • - chemical • - instrumental • Applications Yellow (basic) (aromatic) Yellow (intermediate) (protonated) Red (acidic) (quinoid)

  9. ACID / BASE INDICATORS • PHTHALEIN-derivatives General structure: Outline NEUTRALIZATION ANALYSIS Mechanism: Thymol blue • Introduction • Titrants • Titration curves • End p. detection • - chemical • - instrumental • Applications Colorless (intermediate) Colorless (acidic) Purple (basic)

  10. INSTRUMENTAL DETECTION (Summary) The titration process is followed by electrochemical, photometric or other sensing devices. Outline INSTRUMENTAL DETECTION • Advantages • Types • Potentiometric end point detection • Conductometric end point detection

  11. POTENTIOMETRY Electrode potential developed between: Indicator electrode Reference electrode • Potential (Eind) varies • Depends on the analyte concentration • Known, constant potential (Eref) • Independent of the analyte concentration Outline Common reference electrodes: Solid metal / its „unsoluble” salt / saturated conc. of anion INSTRUMENTAL DETECTION e.g. Ag / AgCl / KCl Hg / Hg2Cl2 / KCl Hg / Hg2SO4 / K2SO4 • Advantages • Types • Potentiometric end point detection • Conductometric end point detection Nernst equation: Glass electrode Neutralization titration: E = E0 + 0.059 lg [H+] Metal electrode 0.059 n Complexometric titration: E = E0 + lg [Mn+] Ion-selective electrode Precipitation titration: E = E0 + 0.059 lg [X−] Nobel metal electrode [ox] [red] 0.059 n Redox titration: E = E0 + lg

  12. POTENTIOMETRYNeutralization analysis Indicator electrode: External reference electrode Glass electrode GLASS ELECTRODE Outline INSTRUMENTAL DETECTION H+ conc. to be determined Electrochemical cell for measurement of pH: • Advantages • Types • Potentiometric end point detection • Conductometric end point detection Internal| buffer sol. | (KCl) (pH = 7) | External reference || electrode || (Hg/Hg2Cl2/KCl) || H+ conc. | to be | determined| pH-sensitive | glass- | membrane| Internal reference electrode (Ag/AgCl/KCl) ███████████ ExternalDry glass Internal hydrated hydrated gel layer gel layer

  13. POTENTIOMETRYGlass electrode Composition of glass: E.g. 22 % Na2O, 6 % CaO, 72 % SiO2. Na+ mobile membrane solution Outline H+ Na+ Ion-exchange reaction: between H+in the solution and Na+ in the glass: H+ Na+ H+ Na+ INSTRUMENTAL DETECTION K H+ + Na+Gl−Na+ + H+Gl–K = LARGE! solutionglasssolution glass • Advantages • Types • Potentiometric end point detection • Conductometric end point detection Combination glass electrode:

  14. POTENTIOMETRYTitration curve Potentiometric titration curve: Measuring the potential of a suitable indicator electrode (pH) as a function ofvolume titrant. Titration curve Outline INSTRUMENTAL DETECTION 1st derivative Determination of the end point:from thederivatives • Advantages • Types • Potentiometric end point detection • Conductometric end point detection 2nd derivative

  15. CONDUCTOMETRIC TITRATION CURVES I. Titration of strong acid(a) with strong base e.g. HClwith NaOH (b)with weak base e.g. HClwith NH4OH Outline INSTRUMENTAL DETECTION % • Advantages • Types • Potentiometric end point detection • Conductometric end point detection II. Titration of weak acid(c) with strong basee.g. CH3COOHwith NaOH (d)withweak base e.g. CH3COOHwith NH4OH %

  16. APPLICATIONS TITRATIONS  Direct  Back (indirect): Outline Analyte Titrant in excess to measure to calculate NEUTRALIZATION ANALYSIS I. Determination ofstrong acids/ bases: Equivalence point:pH = 7 e.g. NaOH • Introduction • Titrants • Titration curves • End point detection • Applications OH−  H2O Vphen. Vmeth.r.

  17. APPLICATIONS • Determination ofweakacids : Equivalence point:pH > 7 (phenolphtalein indicator) weak bases : Equivalence point:pH < 7 (methyl red indicator) II. (a) Determination of weakacids : Ka ≥ 10–5. (10–7- 10–4) Outline e.g. carboxylic acids of low carbon atoms e.g. CH3COOH  Direct: fatty acids (e.g. fat, wax, oil) NEUTRALIZATION ANALYSIS  Back : if the weak acid is volatile e.g.  CO2(as carbonate or hydrogencarbonate) • Introduction • Titrants • Titration curves • End point detection • Applications bubble-free distillation CO2 known amount of Ba(OH)2  back titration of excessBa(OH)2 with standard HCl Distillation apparatus (Maros- Schulek) Application of CO2 determination: Determinationof organic materials Determination of CO2, HCO3– , CO32– content of natural waters • Nonaqueous solvents: Ka < 10–7 > 10–12

  18. APPLICATIONS II. (b)Determination of weak bases : Kb ≥ 10–5 (10–7- 10–4)  Direct: e.g. NH4OH strong base (NaOH)  Back:NH4+ -salt NH3 boiling Outline distillation into known excess of acid Kjeldahl method:  back titration of excess acid (HCl) with basic titrant (NaOH) NH3 NEUTRALIZATION ANALYSIS known HCl Application of NH3 determination: N-containing organic compounds (e.g. amino acids, proteins,…) • Introduction • Titrants • Titration curves • End point detection • Applications Decomposition (mineralization)with cc. H2SO4, 300 °C + catalyst: Se, or Cu2+ Ox. number:– 3 (NH4)2SO4 (e.g.. – NH2, –N(CH3)2, =NH, –N<) Ox. number:+ 3, +1HNO3(+5) (e.g.,azo- (-N=N-), nitro-, nitrozo comp.) Reduction with Zn, Na2S2O4,.. NH4+ • Nonaqueous solvents: Kb < 10–7 > 10–12

  19. APPLICATIONS III.Determination of salts: (a) Neutral salts: NOT MEASURABLE! (b) Salt hydrolyzing to acid: Brönsted acid (strong acid + weak base) MA + H2O  MOH + A– + H+ Outline if pK > 7! can be TITRATED with base E.g. Aniline · HCl; Benzidine ·H2SO4; Papaverine · HCl… (c) Salt hydrolyzing to base: Brönsted base (strong base + weak acid) NEUTRALIZATION ANALYSIS MA + H2O  HA + M+ + OH– if pK > 7 can be TITRATED with acid E.g.Na2B4O7 (B4O72– +7 H2O  4H3BO3 + 2OH–) methyl red • Introduction • Titrants • Titration curves • End point detection • Applications E.g. Na2CO3 (CO32– + H2O  HCO3– + OH–) phenolpht. (CO32– +2 H2O  H2CO3 +2 OH–) methyl red NaHCO3 (HCO3– + H2O  H2O + CO2 +OH–) methyl red Na2CO3 NaHCO3 HCO3−  H2CO3 CO32− HCO3− H2CO3 Vphen = 0 Vphen Vmeth.r. Vmeth.r.

  20. APPLICATIONS (d) Specific determinations: NaOH – Na2CO3 in the presence of each other NaHCO3– Na2CO3 in the presence of each other Outline NEUTRALIZATION ANALYSIS OH−, CO32− HCO3− H2CO3 CO32−HCO3− HCO3− H2CO3 Vphen Vphen Vmeth.r. Vmeth.r. Warder’s method : • Introduction • Titrants • Titration curves • End point detection • Applications one sample : Warder’s method : A. OH– + H+ H2O phenolpht. two samples : CO32– + H+ HCO3–. B. HCO3– + H+ H2CO3methyl red A. CO32– + H+ HCO3–phenolpht.. two samples : B. OH− + H+ H2O CO32– +2H+ H2CO3 B. HCO3– + H+ H2CO3 CO32− +2H+  H2CO3 methyl red methyl red Winkler’s method : A. + BaCl2 CO32– +Ba2+ BaCO3 OH– + H+ H2O phenolpht.

More Related