160 likes | 172 Views
Network Science is reinventing the collaborative innovation model to connect businesses with DeepTech Innovation companies that provide cutting edge solutions. We are market accelerators who ensure that your business receives the right solution from the right people at the best quality.
E N D
Unleashing MachineLearning MachineLearning (ML) TheRationaleBehindSmartPredictions Artificial Intelligence (AI) https://www.networkscience.ai/
MachineLearning (ML) & ArtificialIntelligence (AI) albeitrecenttechnologies, arebynomeans new. Historically, machineshavebeenusedfor severaltasksandfunctionsthatwereotherwise deemedtrivialanddirtyforhumans. Overtime, thesemachineshaveevolvedtotakeonmore complex & sophisticatedactivitiesincluding decisionmakingandstrategyformulation. However, ascomplexitiesincrease, thereisa growingneedforpeopletotrustinthepowerof thesemachinesratherthanquestiontheir abilities. Artificial Intelligence Machine Learning
ArecentstudybyAccentureLabshasrevealedthat MachineLearning, especiallydeeplearning, isquickly seeinganupsurgeinitsadoptioninworkplacesacross industries. Inhealthcare, forinstance, hundredsof companiesareusingMachineLearningalgorithmsand predictiveanalyticstoreducedrugdevelopmenttime anddiagnoseailmentsfrommedicalimages. Similarly, inthetransportationsector, self-drivingcarsusingML areexpectedtobecomeanormwithinthenextcouple ofyears, withcommercialapplicationsofthese automobilesbeingclosebehind. https://www.networkscience.ai/
WhatisMachine Learning?
Theseintelligentsystemstakeonlow-levelpatternrecognitiontaskslikeimagerecognition,Theseintelligentsystemstakeonlow-levelpatternrecognitiontaskslikeimagerecognition, speechrecognitionandnaturallanguageprocessingtohelpcompanieschurnlargevolumesof dataformakingspecificrecommendations. MLallowssoftwaresystemstoprovideuserswith accuratepredictionswithminimaluncertainty. Theinternalalgorithmsinvolvedinthisdecision-makingprocess, however, areoftennotvisibletocompanypersonnel, makingML systemsoperateasostracized “blackboxes”. Thismakes organizationsunwillingtoallocatecorecompetenciestomachines duetohigherrisksofpoordecision-makingandrelatedcosts. Researchindicatesthatintheupcomingyears, machineswillbecompelledtoexplaintheir reasoningandrecommendationsinadeepermanner. Asthenextstageofhumanaugmentation bymachines, thisinteractionwillenablepeopletounderstandandactresponsibly. Itwillwork towardscreatinganeffectiveteambetweenhumansandmachines.
https://www.networkscience.ai/ MachineLearningSynergy
IntelligentsystemspoweredbyMLarenowheretowork alongsidetheirhumancounterparts. Byutilizingsmart machinesforresponsibility, fairness, andtransparency, organizationscanenforcecollaboration & efficiencywithin theirworkplaces. Theseadvancedintelligentsystemsofthe future, however, willnotreplacepeople. Theywill complementandsupporthumansinamannerthatallows businessestomakesmarter, better, andmoreaccurate decisions.
ThereAre3MainMarketDrivers forAdvancedMl-LedSystems. First, thegrowingneedfortransparency, asrequiredbylawssuchastheEU’sGDPR, makesit essentialforcompaniestodisclosehowpersonaldataisbeingusedforselectionandother decision-making. Second, agrowingneedfortrustbetweenAIandhumanbeingsmandatesthat systemsareabletoeffectivelyexplaintherationalebehindtheirdecision-making. Third, istheneed forbettermachine-humansynergy. Withmachinesbeingbetteratrecognizingminutepatternsin largevolumesofdataandpeoplebeingmoreefficientatconnectingthedotsamonghigh-level patterns, thebusinessesoftomorrowaregoingtoincreasinglyneedbothresourcesworkinghand- in-hand.
Data-Level Explanation Throughthismethod, ML-based systemscanprovideevidenceof themodelinganditsresultsusing comparisonsmadewithother examples. Thisallowsthesystem tojustifythedecisiontaken aroundanyparticularissueor targetedprediction.
Model-Level Explanation Thisapproachfocusesmoreon MachineLearningalgorithms. Throughthismethod, the explanationprovidedmakesthe logicmoreunderstandableto humansbyaddingalayerof domainknowledgeontop. Comparedtotheothermethods, model-levelexplanationabstracts mostfromthedatathroughrules orbycombiningitwithsemantics.
Hybrid-Level Explanation Thisapproachworksthebestandis mostusefulifthedatabeingstudied isparticularlylarge, complex, or packed. Themethodusesahigh levelofabstractionbyrefactoring dataatametadatalevel. Ratherthan usingthedataasapieceofevidence asinthecaseofothermethods, the hybrid-levelexplanationoffersan explanationforeveryfeature atametadatalevel.
EnhancedMlWillAllow SophisticatedSystemsTo... Explainthereasoningbehindtheirresultsandhowtheyarrivedatthem Characterizethesystem’sstrengths & weaknesses Comparetheirperformance & outputwiththoseofotherintelligentmachines Conveyresultsinacomprehensivemannerthatshowcasesthepotentialoffuture technologies Makethedecision-makingprocessinbusinessessmarter
ContactUs MakingBusinessThrive ThankyouforshowinginterestinNetworkScience! WeatNetworkScienceareexcitedtobeingin DeepTechtransformationssolutionstoyou. 24, AroraTower, 2 https://www.networkscience.ai/ +442081339019 contact@networkscience.ai WaterviewDrive, London SE100TW, UnitedKingdom
https://www.networkscience.ai/ ThanksForWatching contact@networkscience.ai contact@networkscience.ai contact@networkscience.ai