Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of PowerPoint Presentation
Download Presentation
Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of

Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of

193 Views Download Presentation
Download Presentation

Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Computer training simulation of monolithic column HPLC Jetse C. Reijenga1 and Milan Hutta2 1Eindhoven University of Technology, NL 2Comenius University Bratislava, SK ISSS 2005 Pardubice, Czech Republic 12-14- September 2005

  2. why? to visualize, illustrate, animate H. McNair, Basic Liquid Chromatography, http://hplc.chem.shu.edu/HPLC

  3. Computer training simulation of monolithic column HPLC

  4. J.C. Reijenga, MEKC animation (SDS conc change) from http://edu.chem.tue.nl/ce

  5. application of computer simulations demonstration classroom teaching practical training in (dry) lab as step towards optimization

  6. original software specs #1 200 - 400 nm 75 samples 0 - 65 oC J.C. Reijenga, J. Chromatogr. A 903 (2000) 41-48

  7. original software specs #2 50 - 500 mm 0.1 - 25 mm 1 - 250 µm MeOH ACN THF 5 - 500 mm 1 - 10 mm 1 - 25 µm MeOH ACN J.C. Reijenga, M. Hutta, J. Chromatogr. A 903 (2000) 41-48

  8. other software extensions #1 • Zorbax C8 • Lichrospher100 RP18 5µm • Lichrospher100 CN 5µm • Spherisorb ODS-2 5µm • Aluspher100 RPSelectB 5µm • TSKgel Super ODS • ChromolithPerformance RP C18e

  9. extensions #2, model refinement • 2 parameter model • Valid 20 - 50% • Real experiments • 3 (4) parameter model • Valid 5 - 90% • ChromSword

  10. extensions #3, display options

  11. modeling monoliths #1 pressure drop Kozeny-Carman relation: ΔP = u  L / B0  with specific permeability: B0 = 3 dp2 / Kc (1 - )2 where the Kozeny "constant" Kc= 180 for spherical and 300 for monoliths, why?……. a (macro) posority dependence: Kc() column ε (range) Spherical 0.5 (0.4-0.6) Monolithic 0.8 (0.7-0.9) N. Vervoort, P. Gzil, G.V. Baron and G. Desmet, Anal. Chem. 2003, 75, 843-850

  12. Dynamic pressure drop display

  13. modeling monoliths #2 plate height • H = A + B / u + C * u (omitting the Cs term) • A = 2 * γ * dp (obstruction factorγ = 0.6) • B = 2 * kD * Dm(packing factorkD = 0.4) • C = 1/96 * dp2 / Dm * (11k2 + 6k + 1)/(k + 1)2 • (get Dm from Wilke-Chang: solvent, , T and MW effects ) • (for convenience: dp = particle or macro pore diameter) • "a 2 m monolithic column behaves like a 4 m conventional" • So for monoliths: dp is replaced with 2 dp(same γ and kD values) Jennifer Houston Smith, thesis, Virginia Polytechnic Inst. & State Univ. Blacksburg,2002

  14. Monolithic column 150 mm, 50% ACN, temperature 65 0°C

  15. Conventional column, 150 mm, 35°C, particle diameter 110 µm

  16. conclusions