Basic iv therapy and review of phlebotomy
1 / 90

Basic IV Therapy and review of Phlebotomy - PowerPoint PPT Presentation

  • Uploaded on

Basic IV Therapy and review of Phlebotomy. Megan Kennedy Cochise County Jail Medical. Agenda for the day……. Discuss purpose and uses of class Anatomy & physiology Identifying the purposes of IV infusions IV solutions Setting up an IV IV catheters Selecting the IV site

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about ' Basic IV Therapy and review of Phlebotomy' - chessa

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Basic iv therapy and review of phlebotomy

Basic IV Therapy and review of Phlebotomy

Megan Kennedy

Cochise County

Jail Medical

Agenda for the day
Agenda for the day…….

  • Discuss purpose and uses of class

  • Anatomy & physiology

  • Identifying the purposes of IV infusions

  • IV solutions

  • Setting up an IV

  • IV catheters

  • Selecting the IV site

  • Starting the IV

  • Complications

  • Trouble-shooting

  • Removing the IV line

  • Drip calculations

  • Phlebotomy side of things

  • This course is designed to develop the following course competencies:

  • Identify the need for fluid resuscitation in pediatric and adult victims

  • Identify and describe the vascular anatomy and venous access for the

    pediatric or adult victims

  • Identify and differentiate isotonic, hypotonic, and hypertonic solutions;

  • Select fluids, set up and manage equipment

  • Identify and demonstrate aseptic and safety techniques

  • Identify and describe indications and contraindications for intravenous site selection

  • Perform all peripheral intravenous cannulation techniques, monitor infusion

  • Demonstrate 100% accuracy in intravenous techniques in selected scenarios

  • Demonstrate 85% proficiency on a written examination.

  • Discuss how fluid resuscitation pertains to phlebotomy.

  • Continue or begin your education in intravenous access.

Anatomy competencies:

Introduction competencies:

  • Knowing the anatomy will aid you in performing your skills, even when you cannot see the veins.

  • After this block of instruction you should be able to differentiate between veins and arteries, and show where these items can be found.

Skin competencies:

  • Covers the entire body and acts as a protective layer between the body and the environment.

  • The main functions of the skin are:

    • Protection from harmful influences

    • Control of body temperature

    • Conveyance of sensory impressions

  • Some areas of the bodies skin are highly sensitive and the insertion of a needle in one area may cause a great deal of pain, while another area may be practically painless.

Besides epithelial cells and connective tissue cells, the skin also contains delicately entwined nerves and blood vessels.

Blood vessels
Blood Vessels skin also contains delicately entwined nerves and blood vessels.

  • With the exception of capillaries, the walls of the blood vessels consist of three layers, though the thickness or construction of the individual layers can vary according to the vessel type.

Blood vessels1
Blood Vessels skin also contains delicately entwined nerves and blood vessels.

  • The outer layer consists of connective tissue and facilitates the fitting of the vessel into its environment.

  • The middle layer is composed of smooth muscle containing elastic fibers.

  • The inner layer consists of thin connective tissue. It is covered by a layerof single-layered endothelial cells.

Arteries skin also contains delicately entwined nerves and blood vessels.

  • The arteries are blood vessels which transports blood away from the heart.

  • They are different in construction from the veins in that they have an additional layer of an elastic membrane situated between the inner and middle wall layers.


Depending on the task and the location of the artery, its middle layer may be dominated by smooth muscle or elastic fibers.


Arteries middle layer may be dominated by smooth muscle or elastic fibers.

  • When the heart pumps blood into the arteries during the expulsion phase (systole), their high proportion of elastic fibers permits them to distend.

  • During the relaxation phase (diastole) of the heart, they contract again, transporting blood on further.

  • Arteries with muscle predominating are able to widen (vasodilation) or narrow (vasoconstriction) their diameter through contraction, thus enabling the amount of blood contained within them to increase or decrease with the demands of the body.

  • Arterioles are the smallest arteries.


The veins are the blood vessels which transport blood towards the heart.

The wall layers of the veins are thinner than those of the arteries, yet contain more connective tissue.

The muscle layer is less marked.

The diameter of veins are larger than that of arteries.


Veins towards the heart.

  • As a result of the thin layer of muscle the veins are not able to move blood themselves. They are aided by the surrounding musculature around them.

  • In order to prevent the blood from flowing back, some of the veins, especially those within the extremities, are equipped with venous valves.

  • When the blood is flowing towards the heart, the venous valves lie flat against the venous wall. If the blood congests or starts to flow back, the valves close.

Capillaries towards the heart.

  • Capillaries are the smallest blood vessels in the body

  • They are connected to the arterioles and into the venules, thus representing the link between arteries and veins.

Capillaries towards the heart.

  • In contrast to arteries and veins, capillaries have neither a middle or outer wall layer. They only have an inner layer, constructed of connective tissue and endothelial cells.

  • The diameter of capillaries is very small because of they are so small they circulate in single file.This fact, and the thinness of their wall layer promote their ability to

    exchange material and Water with their


  • The oxygen and nutrients contained within the blood are pressed out of them as a result of the blood pressure and passed off to the intercellular cavities.

  • Carbon dioxide and metabolic products are absorbed by the blood in the exchange

Blood towards the heart.

  • 4-5x thicker than water

  • Liquid connective tissue

    • Adults = 7% of patients weight

      • 4-6 Liters of blood

    • Children = 9% of patients


Physical characteristics of blood
Physical Characteristics of Blood towards the heart.

  • Color range

    • Oxygen-rich blood is scarlet red

    • Oxygen-poor blood is dull red

  • pH must remain between 7.35–7.45

  • Blood temperature is slightly higher than body temperature (100.4)

Functions of blood
Functions of Blood towards the heart.

  • Transportation – oxygen, nutrients, hormones, heat, electrolytes.

  • Carries away from the body tissues

    - Waste matter

    - CO2

  • Protection – Vital role in our immune system; clotting mechanisms that prevent blood loss

  • Regulation – pH, body temperature, water content

Components of blood
Components of Blood towards the heart.

  • PLASMA – is the yellowish fluid of the blood and consists primarily of water (92%) and plasma proteins (7%)

  • Proteins – albumin and fibrinogen

  • FORMED ELEMENTS – solid component of the blood consisting of red blood cells, white blood cells, and platelets

  • BLOOD = 55% plasma

Blood plasma
Blood Plasma towards the heart.

  • Composed of approximately 92 percent water

  • Contains:

    • Nutrients, salt solution

    • Respiratory gases

    • Hormones

    • Proteins, Waste products

Plasma proteins
Plasma Proteins towards the heart.

  • Albumin – regulates osmotic pressure

  • Clotting proteins – help to stem blood loss when a blood vessel is injured

  • Antibodies – help protect the body from antigens

Formed elements types of cells
Formed Elements towards the heart.“Types of Cells”

  • Erythrocytes = Red Blood Cells

  • Leukocytes = White Blood Cells

  • Thrombocytes = Platelets

Erythrocytes red blood cells
Erythrocytes towards the heart.“Red Blood Cells”

  • The main function is to carry oxygen

  • Anatomy of circulating erythrocytes

    • Cells without a nucleus

    • Produced continuously in the bone marrow

      from stem cells at a rate of 2-3

      million cells per second.

      ─ Hemoglobin 95% of a red cell

    • Approximately 120 days life span

  • Outnumber white blood cells 1000:1

Leukocytes white blood cells
Leukocytes towards the heart.“White Blood Cells”

  • These are complete cells, with a nucleus

  • Crucial in the body’s defense against disease. Ingest pathogens & destroy

  • Produce antibodies

  • Can respond to chemicals released by damaged tissues

Thrombocytes platelets
Thrombocytes towards the heart.“Platelets”

  • Cell fragments without nuclei that release blood clotting chemicals

  • Life span of 5-9 days

  • Needed for the clotting process

  • Platelets and clotting proteins work together.

Purpose of starting iv s
Purpose of starting IV’s towards the heart.

  • To deliver fluids

  • To deliver medications

Cellular physiology
Cellular Physiology towards the heart.

  • Body Fluid

    • 1. Total body water = 60% of body weight

    • 2. Electrolytes

      • Sodium

      • Potassium

      • Magnesium

      • Calcium

      • Bicarbonate

      • Chloride

  • 3. Protein towards the heart.

    • Albumin

    • Plasma

    • Other


    • Blood loss

    • Plasma loss

    • Nausea/vomiting/diarrhea

    • Sweating

Isotonic towards the heart. – IV fluids that approximate the osmolaity of blood plasma. I.e.: 0.9% Normal Saline (note the biconcave shape of the cells as they circulate in blood.)

Hypotonic – IV solutions that have a lower osmolarity than blood plasma thus drawing fluids into the cell. I.e.: D5W. (note the cells are visibly swollen and have lost their biconcave shape, and at 100 mOs, most have swollen so much that they have ruptured, leaving what are called red blood cell ghosts.

In a hypotonic solution, water rushes into cells.)

Hypertonic – IV fluids that have a higher osmolality than normal blood plasma thus drawing fluids out of the cells and they get irritated when infused.I.e.: D50 (note water has flowed out of the cells, causing them to collapse and assume the spiky appearance you see.)

Types of iv solutions
Types of IV Solutions towards the heart.

  • 0.9% Sodium Chloride

  • Lactated Ringers

  • D5W

0 9 sodium chloride
0.9% Sodium Chloride towards the heart.

  • Also called normal saline

  • Isotonic solution of sodium chloride in water

  • 9 grams of sodium chloride per liter

  • Indications

    • Restore loss of water and sodium chloride

      • Fractures

      • Trauma

      • Dehydration

      • Hypoglycemia

      • Non-traumatic hypoperfusion

  • Contraindications

    • Use with caution in CHF and pulmonary edema

Lactated ringers
Lactated Ringers towards the heart.

  • Source of water, electrolytes, and calories

  • Indications

    • To replenish fluid and calories, and restore loss of electrolytes

      • Trauma

      • Burns

      • OB

      • Non-traumatic hypotension

      • dehydration

  • Contraindications

    • Use with caution in CHF, pulmonary edema, and liver disease

D5W towards the heart.

  • Hypotonic solution of dextrose in water (50 grams of dextrose per liter)

  • Indications

    • Directed by MD

  • Contraindications

    • Head injury

    • Children

Combinations of Normal Saline, Lactated Ringers, and D5W are often common.

All fluids come in 250cc, 500cc, and 1000cc bags.

Setting up an iv
Setting Up An IV often common.

Assemble and prepare the necessary equipment
Assemble and prepare the necessary equipment often common.

You will need:

The correct IV solution

The correct administration set

An IV catheter

An IV start pack


Alcohol prep

Opsite or equivalent


Inspect the container and solution
Inspect the container often common.and solution

  • Check the label and the expiration date

  • Look for tears in the bag

  • Assess the clarity of the solution; if it isnot clear – DO NOT USE IT!

  • Look at the pull-tab and make sure that it is intact

Types of administration sets
Types of administration sets often common.

  • IV administration sets differ mainly in the drop factor

    (the rate of flow they produce)

Minidrip microdrip pediatric drip
Minidrip/Microdrip/Pediatric Drip often common.

  • Delivers 60 gtts (drops) per cc (ml). Used on all patients that fluids need to be restricted on. I.e.: heart failure patients, dialysis patients, and pediatric patients.

Standard macrodrip
Standard/Macrodrip often common.

  • Delivers 10-20 gtts (drops) per cc (ml). Used on patients that require a large amount of IV fluid. i.e.: trauma, overdoses, burns, heat related emergencies.

Blood tubing
Blood tubing often common.

  • “Y” shaped tubing is also 10 gtts per cc set, but is used with NS for blood administration.

Preparing the iv bag
Preparing the IV bag often common.

  • Remove the protective tab from the insertion port

  • Close the flow clamp on the administration set

  • Remove the protective cap from the administration set

  • Holding the port carefully and firmly with one hand, insert the spike with the other hand

  • Hang the bag and squeeze the drip chamber until it is half full (if there is too much fluid in the chamber, you can turn the IV bag upside down and squeeze the chamber again to return

    the fluid back into the bag)

Priming the iv tubing
Priming the IV tubing often common.

  • Open the flow clamp. Hold the end of the tubing over a collection container. Be sure to maintain the sterility of the tubing!

  • Leave the clamp open until the IV solution flows through the entire length of the tubing, forcing out all air.

  • After priming the tubing, close the clamp.

Iv catheters

IV Catheters often common.

Selecting the iv catheter
Selecting the IV catheter often common.

  • Two types of needles and catheters are commonly used in peripheral lines:

    • Over-the-needle catheters

    • Winged-tip or scalp-vein needles

Iv catheters1
IV catheters often common.

  • The higher the number, the smaller the gauge

  • The larger the gauge, the more fluid that can be delivered

  • The shorter the catheter the more fluid that can be delivered

General rule of thumb for selection of size
General rule of thumb for selection of size: often common.

  • Medical patient’s

    • Use at least a 20 gauge catheter

    • A 22 gauge can be used if the patient has small, fragile veins

  • Pediatric patient’s (NOT USED on ages SIX and UNDER)

    • Use 20-22 gauge

  • Trauma patient’s

    • Use at least an 18 gauge catheter

Selecting the site
Selecting the site often common.

  • Peripheral veins – usually for short-term use (less than 3 weeks)

    • When choosing a peripheral vein both arms should be assessed.

    • Large veins are best suited for emergency infusions

    • Avoid arms with injuries, burns, open sores. Call for medical direction if intravenous access is only possible on mastectomy side.

    • Start with a vein at the most distal site so you can move upward as needed for additional insertion sites.

  • EXCEPTION: often common.

    In a code arrest use the antecubital vein as it is closer to the central circulation. Fluids and medications do not have as far to travel to reach the central circulation.

The most favorable venipuncture sites are: often common.

- veins in the dorsum of the hand

- antecubital vein

- basilic vein

- cephalic vein

Be sure the vein can accommodate the catheter used.

Factors affecting site selection
Factors affecting site selection often common.

  • Type of solution

  • Condition of vein

  • Duration of therapy

  • Cannula size

  • Patient age

  • Patient preference

  • Patient activity

  • Presence of disease or prior surgery, i.e.: mastectomy or shunt (Call for medical direction)

Patient preparation
Patient preparation often common.

  • TALK TO YOUR PATIENT. Explain what you are going to do

  • Prepare equipment

  • Check solution for correct type, valid expiration date, and clarity

  • Place patient in supine position to decrease vasovagal reaction

  • Assess for blood return degree angle beside or directly into the vein, bevel up

  • When blood return is obtained decrease the angle of the catheter and very carefully advance the needle and the catheter approximately ¼ inch to assure the catheter is in the vein

  • A steady backflow of blood indicates a successful venipuncture

  • Release the tourniquet the catheter into the vein while continuing to hold the skin taut

  • Gently place pressure over the vein above the catheter tip to prevent bleeding while removing the needle. Do not compress catheter!

  • Attach fluid source the catheter into the vein while continuing to hold the skin taut

  • Regulate flow rate

If iv is unsuccessful
If IV is unsuccessful the catheter into the vein while continuing to hold the skin taut

  • If you are unsuccessful at gaining intravenous access after three attempts STRONGLY consider recontacting medical direction, finding an equally or more qualified person to attempt IV access, or not continuing with an IV.

Arm boards
Arm boards the catheter into the vein while continuing to hold the skin taut

  • Arm boards should be used to support areas of joint flexion or to restrain IV sites in extremely active patients or children

  • Arm boards should be padded to maintain comfort and prevent nerve or tissue damage

  • Normal joint configuration should be maintained by supplemental padding

  • Tape should NOT be wrapped completely around the patient’s arm, nor should it be applied too tightly because it will act as a tourniquet, decreasing peripheral circulation distal to the IV site

Complications of iv therapy
Complications of IV therapy the catheter into the vein while continuing to hold the skin taut

  • The potential hazards of IV therapy range from minor to life threatening

  • They may be associated with the venipuncture or with the infusion

  • Lack of aseptic technique is a major cause of complications as it induces pathogens into the circulatory system

  • Complications may be local or systemic

Local complications

Local Complications the catheter into the vein while continuing to hold the skin taut

Site infections local contamination of insertion site
Site infections (Local contamination of insertion site) the catheter into the vein while continuing to hold the skin taut

  • Signs and symptoms

    • Redness, warmth, tenderness, and swelling at site

    • Possible purulent material

  • Possible causes

    • Failure to maintain aseptic technique during starting or removing IV catheter

  • Actions

    • Remove IV and restart in unaffected arm

  • Prevention measures

    • Maintain strict aseptic technique of IV insertion

Clotting blockage at the end of the device in the patient s vein
Clotting (Blockage at the end of the device in the patient’s vein)

  • Signs and symptoms

    • Tenderness at IV site

    • Sluggish flow rate

  • Possible causes

    • IV rate too slow to maintain patency of catheter

    • Activity of patient causes increase back-flow of blood

  • Actions

    • Remove IV and restart in another area

  • Prevention measures

    • Maintain constant flow rate

    • Tightly secure all connections

Hematoma raised discolored area caused by leakage of blood at puncture site
Hematoma (Raised, discolored area caused by leakage of blood at puncture site)

  • Signs and symptoms

    • Tenderness at venipuncture site

    • Area around site appears “bruised”

    • Inability to advance IV

  • Possible causes

    • Vein “blown” or punctured through other wall at time of venipuncture

    • Leakage of blood from needle displacement

  • Actions

    • Remove IV catheter

    • Apply pressure to area

  • Prevention measures

    • Do not advance needle further if resistance is met on venipuncture

    • Choose a vein that can accommodate size of IV catheter

Infiltration leakage of iv fluids into surrounding tissues
Infiltration (Leakage of IV fluids into surrounding tissues) at puncture site)

  • Signs and symptoms

    • Swelling, tenderness above the IV site that may extend along the entire arm

    • Decreased skin temperature around the site

    • Fluid continues to infuse even when vein is occluded

    • Back-flow of blood is absent

    • Flow rate is slower or stopped

  • Possible causes

    • Catheter is dislodged from vein or vein is perforated

  • Actions

    • Remove IV catheter

    • Apply ice (early) or warm (later) to aid absorption

    • Elevate extremity

    • Restart IV infusion above infiltration or in another limb

  • Prevention measures

    • Check IV site frequently

    • Do not obscure area above site with tape

    • Restrict movement of limb by placing on arm board

Phlebitis irritation along vein
Phlebitis (Irritation along vein) at puncture site)

  • Signs and symptoms

    • Area along vein is red, tender, and warm

    • Vein is hard and cord-like when palpated

    • Irritation increases with infusion

  • Possible causes

    • Hypertonic solutions

    • Repeated use of same vein for therapy

    • Movement of catheter in vein

    • Catheter is too large or flow rate too rapid for size of vein

    • Clotting at tip of catheter

  • Actions

    • Remove IV catheter

    • Apply warm packs

    • Restart IV infusion is a different limb

  • Prevention measures

    • Use large veins for hypertonic solution infusion

    • Choose smallest IV needle for situation and size of vein

    • Stabilize the catheter to decrease movement in vein

Systemic complications

Systemic Complications at puncture site)

Catheter embolism
Catheter embolism at puncture site)

  • Signs and symptoms

    • Related to specific location of embolus: discomfort, decreased BP, cyanosis, weak pulse, respiratory distress, altered LOC

  • Possible causes

    • Rethreading stylet into catheter

  • Actions

    • Apply tourniquet above IV site to discourage further traveling of device into venous system

  • Prevention measures

    • Withdraw catheter and stylet together is venipuncture is unsuccessful

Air embolism
Air Embolism at puncture site)

  • Signs and symptoms

    • Respiratory distress

    • Unequal breath sounds

    • Weak pulse

    • Decreased BP

    • Loss of consciousness

  • Possible causes

    • Disconnect between catheter and tubing thus allowing air to be sucked in

    • IV tubing that runs dry or is not purged of air properly

    • Solution container empty

  • Actions

    • Discontinue IV infusion

    • Turn patient to left side, head down

    • Administer oxygen

  • Prevention measures

    • Purge tubing completely of air before infusion starts

Circulatory overload
Circulatory overload at puncture site)

  • Signs and symptoms

    • Patient discomfort

    • Neck vein engorgement

    • Increased blood pressure

    • Fluid in lungs; rales, shortness of breath

  • Possible causes

    • Roller clamp loosened to allow “run-away” IV

    • Miscalculation of fluid requirements

  • Actions

    • Slow or stop infusion rate

    • Raise head of patient’s bed

  • Prevention measures

    • Double check IV rate ordered for size and condition of patient

    • Administer oxygen

Systemic infection
Systemic infection at puncture site)

  • Signs and symptoms

    • Fever, chills without apparent reason

    • Nausea, vomiting

    • malaise

  • Possible causes

    • Contaminated IV devices or solution

    • Failure to maintain aseptic technique during insertion

  • Actions

    • Remove IV catheter

    • Restart in another area

  • Prevention measures

    • Examine fluid and container

    • Monitor vital signs

    • Maintain aseptic technique

    • Secure all connections

What to do when infusion stops
What to do when infusion stops at puncture site)

  • Check IV site for infiltration

  • Check IV catheter (position of patients extremity, the tip of catheter may be against the wall of vein, tape may be too tight)

  • Check the flow clamp

  • Check the tubing

  • Check the air vent

    • If one is required (i.e.: glass bottles)

    • Check to be sure the spike is pushed in far enough into bag

    • Try flushing the line with 5-10cc of saline.

      ** If the IV still does not run after all the above have been checked, then it should be discontinued and restarted! **

Changing the solution
Changing the solution at puncture site)

  • Turn the flow clamp off

  • Quickly remove the spike from the bag and insert it into the new bag (assure sterility!)

  • Turn the flow clamp back on and regulate the rate

Removing a peripheral iv line
Removing a peripheral IV line at puncture site)

  • An IV should be removed if it infiltrates, fails to run or the site becomes infected

  • Gather necessary supplies

    • Band-aid or tape

    • Sterile gauze (2x2)

  • Turn the flow clamp off

  • Gently remove all the tape from the catheter and skin

  • Hold the sterile gauze over the insertion site and withdraw the catheter with a gentle, brisk movement keeping it parallel to the skin

  • Cover the site with a band-aid or tape

  • Document:

    • Reason for removal

    • Time

    • Catheter integrity

Documentation guidelines

Patient care report documentation should include
Patient Care Report documentation should include: at puncture site)

  • Time

  • Site/Location of IV

  • # of attempts

  • Gauge of catheter

  • Solution type

  • Rate of IV

  • Absence of problems

  • Total volume infused at transfer of care

    • 1310 IV 0.9% NS started Left posterior hand 1st attempt with 18g @ TKO rate. No signs/symptoms of infiltration. IV infusing without difficulty. 50cc infused upon transfer of care to…….

Factors affecting sample quality
Factors affecting sample quality: at puncture site)

  • Poor vein selection

  • Incorrect order of draw

  • Insufficient blood draw volume

  • Insufficient mixing

Phlebotomy things to remember
Phlebotomy: at puncture site)Things to remember

  • The tourniquet should be on the arm no longer than ONE minute.

  • Release the tourniquet before removing the needle.

  • Searching for an appropriate vein correctly first, means less pokes for the patient later.

  • If using alcohol wipes, allow the area to dry completely before venipuncture.

Phlebotomy cont
Phlebotomy cont. at puncture site)

  • Make sure that the blood collection tubes are drawn in the correct order that is indicated by the lab that you will be utilizing.

  • If tubes are drawn in incorrect order contamination can occur. This can also cause false results.

  • Fill collection tubes to the correct volume (indicated by a black mark at the appropriate fill level) If the tube is not filled to the correct volume it can also cause false results.

Phlebotomy cont1
Phlebotomy cont. at puncture site)

  • Proper mixing is essential. Gently mix the tubes by rocking back and forth at least 8-10 times IMMEDIATELY after filling the tube. (DO NOT shake vigorously!)

  • Store unused tubes at room temperature. Never leave supplies inside a vehicle where temperatures can get very high (this may cause decrease in vacuum)

  • As always, check the expiration dates prior to use! (using expired tubes may also cause decrease in vacuum)

Any questions

Any Questions????? at puncture site)

Iv drip rate
IV drip rate: at puncture site)

Volume to be infused (ml) X drip factor of tubing

gtts/min =

Time (min) to be infused

i.e.: 1000ml X 10

= 166 gtts/min