ECE 546 Lecture -09 Scattering Parameters - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
ECE 546 Lecture -09 Scattering Parameters PowerPoint Presentation
Download Presentation
ECE 546 Lecture -09 Scattering Parameters

play fullscreen
1 / 66
ECE 546 Lecture -09 Scattering Parameters
180 Views
Download Presentation
cate
Download Presentation

ECE 546 Lecture -09 Scattering Parameters

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. ECE 546 Lecture -09 Scattering Parameters Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu

  2. Transfer Function Representation Use a two-terminal representation of system for input and output

  3. Y-parameter Representation

  4. Y Parameter Calculations To make V2= 0, place a short at port 2

  5. Z Parameters

  6. Z-parameter Calculations To make I2= 0, place an open at port 2

  7. H Parameters

  8. H Parameter Calculations To make V2= 0, place a short at port 2

  9. G Parameters

  10. G-Parameter Calculations To make I2= 0, place an open at port 2

  11. TWO-PORT NETWORK REPRESENTATION Z Parameters Y Parameters • - At microwave frequencies, it is more difficult to measure total voltages • and currents. • Short and open circuits are difficult to achieve at high frequencies. • - Most active devices are not short- or open-circuit stable.

  12. Wave Approach Use a travelling wave approach - Total voltage and current are made up of sums of forward and backward traveling waves. - Traveling waves can be determined from standing-wave ratio.

  13. Wave Approach Zo is the reference impedance of the system b1 = S11 a1 + S12 a2 b2 = S21 a1 + S22 a2

  14. Wave Approach To make ai = 0 1) Provide no excitation at port i 2) Match port i to the characteristic impedance of the reference lines. CAUTION : ai and bi are the traveling waves in the reference lines.

  15. S-Parameters of TL

  16. S-Parameters of Lossless TL If Zc = Zref

  17. N-Port S Parameters If bi = 0, then no reflected wave on port i port is matched : incident voltage wave in port i : reflected voltage wave in port i : impedance in port i

  18. N-Port S Parameters (2) (3) (1) Substitute (1) and (2) into (3) Defining S such that b = Sa and substituting for b : unit matrix SZ ZS

  19. N-Port S Parameters If the port reference impedances are different, we define k as and and ZS SZ

  20. Normalization Assume original S parameters as S1 with system k1. Then the representation S2 on system k2 is given by Transformation Equation If Z is symmetric, S is also symmetric

  21. Dissipated Power The dissipation matrix D is given by: Passivity insures that the system will always be stable provided that it is connected to another passive network • For passivity • (1) the determinant of D must be • (2) the determinant of the principal minors must be

  22. Dissipated Power When the dissipation matrix is 0, we have a lossless network The S matrix is unitary. For a lossless two-port: If in addition the network is reciprocal, then

  23. Lossy and Dispersive Line

  24. Frequency-Domain Formulation* * J. E. Schutt-Aine and R. Mittra, "Scattering Parameter Transient analysis of transmission lines loaded with nonlinear terminations," IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp. 529-536, March 1988.

  25. Frequency-Domain

  26. Time-Domain Formulation

  27. Time-Domain Formulation

  28. Time-Domain Solutions

  29. Time-Domain Solutions

  30. Special Case – Lossless Line Wave Shifting Solution

  31. Time-Domain Solutions

  32. Simulations Line length = 1.27m Zo = 73 W v = 0.142 m/ns

  33. Simulations

  34. Simulations Line length = 25 in C = 39 pF/m Pulse magnitude = 4V L = 539 nH/m Ro = 1 kW (GHz)1/2 Pulse width = 20 ns Rise and fall times = 1ns

  35. N-Line S-Parameters* B1 = S11 A1 + S12 A2 B2 = S21 A1 + S22 A2 * J. E. Schutt-Aine and R. Mittra, "Transient analysis of coupled lossy transmission lines with nonlinear terminations," IEEE Trans. Circuit Syst., vol. CAS-36, pp. 959-967, July 1989.

  36. Scattering Parameters for N-Line

  37. Scattering Parameter Matrices Eo:Reference system voltage eigenvector matrix E: Test system voltage eigenvector matrix Ho:Reference system current eigenvector matrix H: Test system current eigenvector matrix Zo: Reference system modal impedance matrix Zm: Test system modal impedance matrix

  38. Eigen Analysis * Diagonalize ZY and YZ and find eigenvalues. * Eigenvalues are complex: li = ai + jbi

  39. Solution

  40. Solutions

  41. Solutions

  42. Lossless Case – Wave Shifting

  43. Solution for Lossless Lines

  44. Why Use S Parameters? S-Parameter Y-Parameter Reference Line Reference Line Test Line Test line: Zc, g Test line: Zc, g Zo Zo short Zc : microstrip characteristic impedance g : complex propagation constant l : length of microstrip Y11 can be unstable S11 is always stable

  45. Choice of Reference Zref is arbitrary What is the best choice for Zref ? At high frequencies Thus, if we choose

  46. Choice of Reference S-Parameter measurements (or simulations) are made using a 50-ohm system. For a 4-port, the reference impedance is given by: 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 Z: Impedance matrix (of blackbox) S: S-parameter matrix Zo: Reference impedance I: Unit matrix Zo =

  47. Reference Transformation Method: Change reference impedance from uncoupled to coupled system to get new S-parameter representation 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 Uncoupled system Zo = 328.0 69.6 328.9 69.6 69.6 328.8 69.6 328.9 328.9 69.6 328.8 69.6 69.6 328.9 69.6 328.8 Coupled system Zo = as an example…

  48. using 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 Zo = as reference… using 328.0 69.6 328.9 69.6 69.6 328.8 69.6 328.9 328.9 69.6 328.8 69.6 69.6 328.9 69.6 328.8 Zo = as reference… Choice of Reference Harder to approximate Easier to approximate (up to 6 GHz)

  49. using 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 Zo = as reference… using 328.0 69.6 328.9 69.6 69.6 328.8 69.6 328.9 328.9 69.6 328.8 69.6 69.6 328.9 69.6 328.8 Zo = as reference… Choice of Reference Harder to approximate Easier to approximate (up to 6 GHz)

  50. using 328.0 69.6 328.9 69.6 69.6 328.8 69.6 328.9 328.9 69.6 328.8 69.6 69.6 328.9 69.6 328.8 Zo = as reference… Choice of Reference using 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 Zo = as reference… Harder to approximate Easier to approximate (up to 6 GHz)