560 likes | 635 Views
This course focuses on deriving the Hamiltonian structure using the Isomonodromic Deformations Method (IMD) in Painleve equations, including generalizations. It covers the Hamiltonian formulation and offers examples, like PII. The course delves into complex equations and guides you through the process of deriving Hamiltonian formulation from IMD, providing insight into more intricate equations. Literature references such as Adler-Kostant-Symes and Hitchin are included, along with a recap on Poisson and symplectic manifolds and Lie groups. Learn about Poisson brackets, phase space, and Lie algebras, and explore examples like SL(2,C). Join this course to deepen your understanding of Hamiltonian structures in the context of Painleve equations.
E N D
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation:
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation:
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation: Example: PII
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation: Example: PII • Isomonodromic deformations method (IMD):
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation: Example: PII • Isomonodromic deformations method (IMD):
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation: Example: PII • Isomonodromic deformations method (IMD):
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS • Hamiltonian formulation: Example: PII • Isomonodromic deformations method (IMD): Example: PII
In this course we shall see how to deduce the Hamiltonian formulation from the IMD.
In this course we shall see how to deduce the Hamiltonian formulation from the IMD. Motivation: find the Hamiltonian structure of more complicated generalizations of the Painleve’ equations
In this course we shall see how to deduce the Hamiltonian formulation from the IMD. Motivation: find the Hamiltonian structure of more complicated generalizations of the Painleve’ equations (2) Example: PII What are p , p , q , q in this case? What is H? 1 2 1 2
In this course we shall see how to deduce the Hamiltonian formulation from the IMD. Motivation: find the Hamiltonian structure of more complicated generalizations of the Painleve’ equations (2) Example: PII What are p , p , q , q in this case? What is H? 1 2 1 2 Literature: Adler-Kostant-Symes, Adams-Harnad-Hurtubise, Gehktman, Hitchin, Krichever, Novikov-Veselov, Scott, Sklyanin…………….. Recent books: Adler-van Moerbeke-Vanhaeke Babelon-Bernard-Talon
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics)
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics) • M = phase space
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics) • M = phase space • F(M) = algebra of differentiable functions
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics) • M = phase space • F(M) = algebra of differentiable functions { , }: F(M) x F(M) -> F(M) • Poisson bracket: {f,g} = -{g,f} skewsymmetry {f, a g+ b h} = a {f,g} + b {f,h} linearity {f, g h} = {f, g} h + {f, h} g Libenitz {f,{g,h}} + {h,{f,g}} + {g,{h,f}} = 0 Jacobi
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics) • M = phase space • F(M) = algebra of differentiable functions { , }: F(M) x F(M) -> F(M) • Poisson bracket: {f,g} = -{g,f} skewsymmetry {f, a g+ b h} = a {f,g} + b {f,h} linearity {f, g h} = {f, g} h + {f, h} g Libenitz {f,{g,h}} + {h,{f,g}} + {g,{h,f}} = 0 Jacobi • Vector field XH associated to H eF(M): XH(f):= {H,f}
Recap on Poisson and symplectic manifolds. (Arnol’d, Classical Mechanics) • M = phase space • F(M) = algebra of differentiable functions { , }: F(M) x F(M) -> F(M) • Poisson bracket: {f,g} = -{g,f} skewsymmetry {f, a g+ b h} = a {f,g} + b {f,h} linearity {f, g h} = {f, g} h + {f, h} g Libenitz {f,{g,h}} + {h,{f,g}} + {g,{h,f}} = 0 Jacobi • Vector field XH associated to H eF(M): XH(f):= {H,f} A Posson manifold is a differentiable manifold M with a Poisson bracket { , }
Recap on Lie groups and Lie algebras Lie group G: analytic manifold with a compatible group structure • multiplication: G x G --> G • inversion: G --> G
Recap on Lie groups and Lie algebras Lie group G: analytic manifold with a compatible group structure • multiplication: G x G --> G • inversion: G --> G Example:
Recap on Lie groups and Lie algebras Lie group G: analytic manifold with a compatible group structure • multiplication: G x G --> G • inversion: G --> G Example: Lie algebrag: vector space with Lie bracket • [x, y] = -[y,x] antisymmetry • [a x + b y,z] = a [x, z] + b [y, z] linearity • [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 Jacobi
Recap on Lie groups and Lie algebras Lie group G: analytic manifold with a compatible group structure • multiplication: G x G --> G • inversion: G --> G Example: Lie algebrag: vector space with Lie bracket • [x, y] = -[y,x] antisymmetry • [a x + b y,z] = a [x, z] + b [y, z] linearity • [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 Jacobi Example:
Adjoint and coadjoint action. • Given a Lie group G its Lie algebra g is Te G.
Adjoint and coadjoint action. • Given a Lie group G its Lie algebra g is Te G. Example: G = SL(2,C). Then
Adjoint and coadjoint action. • Given a Lie group G its Lie algebra g is Te G. Example: G = SL(2,C). Then • g acts on itself by the adjoint action:
Adjoint and coadjoint action. • Given a Lie group G its Lie algebra g is Te G. Example: G = SL(2,C). Then • g acts on itself by the adjoint action: • g acts on g* by the coadjoint action:
Example: • Symmetric non-degenerate bilinear form:
Example: • Symmetric non-degenerate bilinear form: • Coadjoint action:
Example: • Symmetric non-degenerate bilinear form: • Coadjoint action:
Example: • Symmetric non-degenerate bilinear form: • Coadjoint action:
Loop algebra • Commutator:
Loop algebra • Commutator: • Killing form:
Loop algebra • Commutator: • Killing form: • Subalgebra:
Loop algebra • Commutator: • Killing form: • Subalgebra: • Dual space:
Loop algebra • Commutator: • Killing form: • Subalgebra: • Dual space:
Loop algebra • Commutator: • Killing form: • Subalgebra: • Dual space:
Coadjoint orbits Integrable systems = flows on coadjoint orbits:
Coadjoint orbits Integrable systems = flows on coadjoint orbits: Example: PII
Coadjoint orbits Integrable systems = flows on coadjoint orbits: Example: PII
Coadjoint orbits Integrable systems = flows on coadjoint orbits: Example: PII
Kostant - Kirillov Poisson bracket on the dual of a Lie algebra
Kostant - Kirillov Poisson bracket on the dual of a Lie algebra • Differential of a function
Kostant - Kirillov Poisson bracket on the dual of a Lie algebra • Differential of a function Example: PII. Take
Definition: Example:
Definition: Example:
Definition: Example: