240 likes | 359 Views
In this chapter, you will learn how to use a binary search tree (BST) template with your own classes, and implement a display function to visualize the tree structure. The process begins with downloading the project files and building the program. You will explore various tree traversal methods including preorder, inorder, and postorder traversals. Emphasis is placed on the importance of maintaining a balanced tree to ensure efficient search times. Examples show how different insertions can lead to varying tree structures.
E N D
Binary Search Trees II Chapter 6
Objectives • You will be able to use a binary search tree template with your own classes.
Getting Started • Download project from last class: • http://www.cse.usf.edu/~turnerr/Data_Structures/Downloads/2011_03_07_Binary_Search_Tree/ File BST_Demo.zip • Build and run.
Add Display() • Let's add a function to display the tree showing its structure. • Not in the book. • For ease of coding • Root at left side of the screen. • Successive levels indented to the right. • Right child will be above a node. • Left child will be below. • This permits a simple recursive implementation.
genBST1.h #include <iostream> #include <iomanip> ... public: ... // Display the tree on the screen in graphical format void display(std::ostream & out) const {display(out, 0, root);}; protected: // Display any subtree in graphical format void display(std::ostream & out, int indent, const BSTNode<T>* subtreeRoot) const;
genBST1.h // Display any subtree in graphical format template<class T> void BST<T>::display(ostream & out, int indent, const BSTNode<T>* subtreeRoot) const { if (subtreeRoot != 0) { display(out, indent + 8, subtreeRoot->right); out << setw(indent) << " " << subtreeRoot->key << endl << endl; display(out, indent + 8, subtreeRoot->left); } }
main.cpp #include <iostream> ... cout << endl << endl; my_BST.display(cout); cin.get(); return 0; }
Inserting Nodes in Different Order • What if we had added the items in increasing numerical order? my_BST.insert(2); my_BST.insert(10); my_BST.insert(12); my_BST.insert(13); my_BST.insert(20); my_BST.insert(25); my_BST.insert(29); my_BST.insert(31);
A Lopsided Tree • What will be the search time in this tree? • Efficiency of BST depends on keeping the tree reasonably well balanced. • A lopsided tree is no better than a linked list. Replace original insert code. End of Section
Tree Traversal • Visit each node of the tree exactly once. • Many possible orders. • Only a few are of practical interest. • Broad categories: • Depth first • Breadth first
Depth First Traversal • Three Versions • Inorder • LNR: Left Subtree, Node, Right Subtree • Preorder • NLR: Node, Left Subtree, Right Subtree • Postorder • LRN: Left Subtree, Right Subree, Node • Name ("In", "Pre", "Post") indicates where the Node is visited relative to its subtrees.
genBST1.h public: ... // Traversal methods void preorder() { preorder(root); } void inorder() { inorder(root); } void postorder() { postorder(root);} protected: ... void preorder(BSTNode<T>*); void inorder(BSTNode<T>*); void postorder(BSTNode<T>*); virtual void visit(BSTNode<T>* p) { cout << p->key << ' '; } Why virtual?
Preorder Traversal At end of genBST1.h: template<class T> void BST<T>::preorder(BSTNode<T> *p) { if (p != 0) { visit(p); preorder(p->left); preorder(p->right); } }
Using Preorder Traversal At end of main.cpp: cout << endl << endl << "Preorder traversal: " << endl; my_BST.preorder(); cout << endl;
Inorder Traversal At end of genBST1.h: template<class T> void BST<T>::inorder(BSTNode<T> *p) { if (p != 0) { inorder(p->left); visit(p); inorder(p->right); } }
Using Inorder Traversal In main.cpp: cout << endl << endl << "Inorder traversal: " << endl; my_BST.inorder(); cout << endl;
Inorder Traversal Output Note that elements are in numerical order.
Postorder Traversal At end of genBST1.h: template<class T> void BST<T>::postorder(BSTNode<T>* p) { if (p != 0) { postorder(p->left); postorder(p->right); visit(p); } }
Using Postorder Traversal In main.cpp: cout << endl << endl << "Postorder traversal: " << endl; my_BST.postorder(); cout << endl;
Postorder Traversal Output End of Section