Computer and Robot Vision II - PowerPoint PPT Presentation

computer and robot vision ii n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Computer and Robot Vision II PowerPoint Presentation
Download Presentation
Computer and Robot Vision II

play fullscreen
1 / 82
Computer and Robot Vision II
179 Views
Download Presentation
brita
Download Presentation

Computer and Robot Vision II

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Computer and Robot Vision II Chapter 19 Knowledge-Based Vision Presented by: 傅楸善 & 王夏果 0937384214 指導教授: 傅楸善 博士

  2. 19.1 Introduction • knowledge-based vision system: uses domain knowledge to analyze images • knowledge: might be very general about 3D objects or extremely specific • urban scene knowledge: appearance of houses, roads, office buildings • airport scene knowledge: runways, terminals, hangars DC & CV Lab. CSIE NTU

  3. 19.2 Knowledge Representations • knowledge representation structures: • feature vectors • relational structures • hierarchical structures • rules • frames DC & CV Lab. CSIE NTU

  4. 19.2.1 Feature Vectors • feature vector: simplest form of knowledge representation in computer vision • feature vector: tuple of measurements of features with numeric values • feature vectors: attribute-value tables: property lists • feature-vector representation: uses global features of object DC & CV Lab. CSIE NTU

  5. 19.2.1 Feature Vectors (cont.) • some useful features in character recognition: • number of straight strokes • number of loops • width-to-height ratio of character • two hand-printed characters and their feature vectors DC & CV Lab. CSIE NTU

  6. 19.2.1 Feature Vectors (cont.) DC & CV Lab. CSIE NTU

  7. 19.2.2 Relational Structures • complex objects and scenes: often composed of recognizable parts full description of complex entity consists of: • 1. global features • 2. global features of each of its parts • 3. relationships among parts DC & CV Lab. CSIE NTU

  8. 19.2.2 Relational Structures (cont.) • global attributes to represent line drawing extracted from gray tone image: • total number of line segments • density of line segments (average number of segments per unit area) • size (number of rows and number of columns) DC & CV Lab. CSIE NTU

  9. 19.2.2 Relational Structures (cont.) • for each line segment: • start coordinates: Row_Start, Col Start • endpoint coordinates: Row_End, Col End • length: Length • angle: Angle DC & CV Lab. CSIE NTU

  10. 19.2.2 Relational Structures (cont.) • three relationships to define perceptual groupings of line segments: • proximity • parallelism • collinearity • relational description of a simple line drawing DC & CV Lab. CSIE NTU

  11. DC & CV Lab. CSIE NTU

  12. 19.2.3 Hierarchical Structures • hierarchical structure represents better: entity broken into parts recursively • hierarchical structures have: both hierarchical and relational component • HD: Hierarchical Description • LEFT, ABOVE: relational description • atomic parts: can be broken down no further • hierarchical, relational description of an outdoor scene DC & CV Lab. CSIE NTU

  13. 19.2.3 Hierarchical Structures DC & CV Lab. CSIE NTU

  14. 19.2.4 Rules • Rule-based systems encode knowledge in form of rules DC & CV Lab. CSIE NTU

  15. 19.2.4 Rules (cont.) DC & CV Lab. CSIE NTU

  16. 19.2.4 Rules (cont.) DC & CV Lab. CSIE NTU

  17. 19.2.5 Frames and Schemas • frame data-structure for representing stereotyped situation relational structure whose terminal nodes consist of: • slots attributes • fillers values for those attributes DC & CV Lab. CSIE NTU

  18. 19.2.5 Frames and Schemas (cont.) • schema in database terminology: model or prototype • frame describing generalized cylinder model of electric motor: DC & CV Lab. CSIE NTU

  19. 19.3 Control Strategies • control strategy of system: dictates how knowledge will be used • KS: Knowledge Source • four kinds of control used in machine vision systems DC & CV Lab. CSIE NTU

  20. 19.3 Control Strategies (cont.) DC & CV Lab. CSIE NTU

  21. 19.3.1 Hierarchical Control • hierarchical control most common control structure in computer programming bottom-up control scenario: • preprocessing routines to convert original image to extract primitives • feature extraction: locates features of interest • decision-making: procedure performs some recognition task • hybrid control with feedback: neither bottom-up nor top-down control DC & CV Lab. CSIE NTU

  22. 19.3.2 Heterarchical Control • heterarchical control: lets data themselves dictate order of operations • knowledge sources: knowledge embodied in set of procedures • blackboard approach: tries to add some order to heterarchy • blackboard: global database shared by set of independent knowledge sources • blackboard scheduler: controls access to blackboard by knowledge sources • blackboard scheduler: decides execution order of competing knowledge sources DC & CV Lab. CSIE NTU

  23. Joke DC & CV Lab. CSIE NTU

  24. 19.4Information Integration • hypothesis: proposition or statement either true or false • hypothesize-and-test paradigm: commonly used within control structures • hypothesis: generated on the basis of some initial evidence number indicating certainty that hypothesis is true DC & CV Lab. CSIE NTU

  25. 19.4Information Integration (cont.) • two main approaches to information integration problem: • Bayesian belief network • Dempster-Shafer theory of evidence DC & CV Lab. CSIE NTU

  26. 19.4.1 Bayesian Approach • Bayesian belief network: directed acyclic graph • Bayesian belief network: with nodes representing propositional variables • Bayesian belief network: with arcs representing causal relationships DC & CV Lab. CSIE NTU

  27. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  28. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  29. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  30. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  31. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  32. DC & CV Lab. CSIE NTU

  33. 19.4.2 Dempster-Shafer Theory • Bayesian model: allows positive belief in proposition but not disbelief • Dempster-Shafer theory: information integration allowing belief and disbelief DC & CV Lab. CSIE NTU

  34. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  35. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  36. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  37. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  38. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  39. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  40. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  41. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  42. DC & CV Lab. CSIE NTU

  43. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  44. DC & CV Lab. CSIE NTU

  45. 19.4.2 Dempster-Shafer Theory (cont.) • belief in proposition A DC & CV Lab. CSIE NTU

  46. DC & CV Lab. CSIE NTU

  47. 19.4.2 Dempster-Shafer Theory (cont.) • result of combined m-values DC & CV Lab. CSIE NTU

  48. DC & CV Lab. CSIE NTU

  49. 19.4.2 Dempster-Shafer Theory (cont.) • total areas renormalized to ignore useless areas (each item divided by .781) DC & CV Lab. CSIE NTU

  50. DC & CV Lab. CSIE NTU