230 likes | 357 Views
This document explores the impact of various parameters on the functions of parabolas, focusing on the effects of parameters ‘a’, ‘b’, ‘h’, and ‘k’. It details how changing these parameters influences the vertical and horizontal scaling, skewing, and translation of parabolic graphs. For instance, increasing or decreasing parameter ‘a’ alters vertical stretching or compression, while changes in ‘b’ affect horizontal transformations. The relationship between the original function f(x) = x² and g(x) = ax² demonstrates how parameter adjustments can be visually interpreted using coordinates.
E N D
EFFECTS OF PARAMETERS ON FUNCTIONS
Parameter ‘a’ increases from 1 to 2 f(x) = 2x2 f(x) = x2 Parabola stretches vertically
f(x) = x2 Parameter ‘a’ decreases from 1 to f(x) = x2 Parabola compresses vertically
Parameter ‘a’ changes from 1 to -1 f(x) = -x2 f(x) = x2 Parabola inverts vertically
Parameter ‘a’ moves from -1 to -2 f(x) = -2x2 f(x) = -x2 Parabola stretches vertically
2 -2 x 2 1 -1 1 -1 0 -2 x 0 1 2 g(x) f(x) 4 0 0 1 8 2 4 8 If f(x) = x2 and g(x) = ax2, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). f(x) = x2 g(x) = 2x2
Parameter ‘b’ increases from 1 to 2 Function compresses horizontally
Parameter ‘b’ decreases from 1 to 0.5 Function stretches horizontally
Parameter ‘b’ changes from 1 to -1 Parabola inverts horizontally
Parameter ‘b’ increases from 1 to 2 f(x) = |2x| f(x) = |x| Function compresses horizontally
Parameter ‘b’ decreases from 1 to ½ f(x) = |½x| f(x) = |x| Function stretches horizontally
4 x 2 -4 -2 0 2 x -2 -1 0 1 2 2 4 0 f(x) 4 2 4 4 0 2 g(x) Impact of parameter ‘b’ -Horizontal Scale change As ‘b’ moves further from zero, the function compresses horizontally As ‘b’ moves closer to zero, the function stretches horizontally If parameter ‘b’ changes its sign, the graph will invert horizontally If f(x) = |x| and g(x) = |bx|, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). f(x) = |x| g(x) = |2x|
Parameter ‘h’ increases from 0 to 4 Function translates 4 units to the right
Parameter ‘h’ decreases from 0 to -2 f(x) = |x + 2| f(x) = |x| Function translates 2 units to the left
Parameter ‘h’ decreases from 0 to -7 Function translates horizontally 7 units to the left
4 x 2 -4 -2 0 2 x -6 -4 -2 0 2 2 4 0 f(x) 4 2 4 4 0 2 g(x) Impact of parameter ‘h’ -Horizontal Translation As ‘h’ increases from zero, the function translates to the right As ‘h’ decreases from zero, the function translates to the left If f(x) = |x| and g(x) = |x - h|, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). f(x) = |x| g(x) = |x + 2|
Parameter ‘k’ increases from 0 to 2 f(x) = x2 + 2 f(x) = x2 Parabola translates vertically up 2 units
Parameter ‘k’ decreases from 0 to -7 Function translates vertically 7 units down
Parameter ‘k’ increases from 0 to 3 Function translates 3 units up
4 x 4 -4 -2 0 2 x -4 -2 -0 2 2 4 4 0 f(x) 6 4 4 6 2 2 g(x) Impact of parameter ‘k’ -Vertical Translation As ‘k’ increases from zero, the function translates up As ‘k’ decreases from zero, the function translates down If f(x) = |x| and g(x) = |x| + k, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). f(x) = |x| g(x) = |x| + 2
Parameter ‘a’, ‘h’ and ‘k’ all change f(x) = 2(x – 4)2 - 3 f(x) = x2 Parabola stretches vertically, translates to the right and translates down
Parameter ‘a’, ‘b’ and ‘h’ all change Function stretches vertically, inverts horizontally and translates 3 to the right.
x 0 -1 1 4 2 9 -6 x 3 f(x) 0 1 2 3 4 6 8 g(x) 10 Impact of parameters ‘a’, ‘b’, ‘h’ and ‘k’