1 / 35

С HART OF NUCLEI

Predicted nuclear data for nucleosinthesis calculations Lutostansky Yu. S., Panov I.V N a tional Research Center "Kurchatov Institute" Institute of Theoretical and Experimental Physics, ITEP. 1. С HART OF NUCLEI. 2. DYNAMIC PROCESSES OF IMPULCE NUCLEOSYNTESIS. Superheavy nuclei.

bratcliffe
Download Presentation

С HART OF NUCLEI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Predicted nuclear data for nucleosinthesis calculationsLutostansky Yu. S., Panov I.VNational Research Center "Kurchatov Institute"Institute of Theoretical and Experimental Physics, ITEP 1

  2. СHART OF NUCLEI 2

  3. DYNAMIC PROCESSES OF IMPULCE NUCLEOSYNTESIS. Superheavy nuclei β-decay fission s-process track r-process track β-decay The tracks of elements synthesis ins (slow)- andr (rapid)- processes. 3

  4. DYNAMIC PROCESSES OF IMPULSE NUCLEOSYNTESIS. Superheavy nuclei β-decay fission Cold s-process track Hot r-process track β-decay The tracks of elements synthesis ins (slow)- andr (rapid)- processes. 4

  5. DYNAMIC MODEL OF NUCLEOSYNTHESIS – 2TWO-STEP PROCESS 1. The importance of nuclear input for r-process nucleosynthesis. 2. Spontaneous-fissionwill hinder the production of elements beyond Z = 120 “Have superheavy elements been produced in nature?” I. Petermann, K. Langanke, G. Mart´ınez-Pinedo, I.V. Panov, P.-G. Reinhard, and F.-K. Thielemann. Eur. Phys. J. A (2012) 48: 122 5

  6. IMPULCE NUCLEOSYNTHESIS OF THE HEAVY NUCLEI Dynamic r-process Hot Cold NUCLEOSYNTHESIS OF THE HEAVY NUCLEI in s (slow)andr (rapid)- processes – nuclei withT1/2  1 y. ; О – T1/2 < 1 y.; + ‑ predictions. Dynamic r-process tracks. 6

  7. Nuclear physics in the r-process • Fission rates and distributions: • n-induced • spontaneous • b-delayed b-delayed n-emissionbranchings(final abundances) b-decay half-lives(progenitor abundances, process speed) • Neutron-capture rates • for A>130 in slow freeze-out • for A<130 maybe in a “weak” r-process ? n-physics ? Seed productionrates (aaa,aan, a2n, ..) Masses (Sn)(location of the path) 7

  8. METHOD: r –Process equations for the concentration calculations Concentrations n(A,Z) are changing in time(may be more than6000 equations): dn(A, Z)/dt= – (A, Z).n(A, Z) –n(A, Z).n(A, Z) + n(A+1, Z).n(A+1, Z) + + n(A–1, Z).n(A–1, Z) – n(A, Z).n(A, Z) + + (A, Z–1).n(A, Z–1) × P(A, Z–1) + (A+1,Z–1).n(A+1,Z–1) × P1n(A+1,Z–1)+ + (A+2,Z–1).n(A+2,Z–1)×P2n(A+2,Z–1) +(A+3,Z–1)n(A+3,Z–1) × P3n(A+3,Z–1)+ + (A, Z) + Ff (A, Z), n andn — rates of (n,γ) and (γ,n) -reactions,=ln2/T1/2 —-decay rate, P - probability of (A, Z) nuclide creation after –-decay of (A, Z-1) nuclide. Branching coefficients of isobaric chains - P1n, P2n, Р3ncorresponds to probabilities of one-, two- and three- neutrons emission in–- decay of the neutron-rich nuclei; the total probability of the delayed neutrons emission is the sum: Ff (A, Z)describes fission processes. Neutrino capturing processes (A, Z) 8

  9. r –process equations for the concentration calculations.Dynamic model: n/ n(A, Z)→  n/ n (A, Z, t); n(A, Z)→ n(A, Z, t) Concentrations n(A,Z, t) are changing in time(may be more than6000 equations): dn(A, Z, t)/dt = – (A, Z).n(A, Z, t) –n(A, Z, t).n(A, Z, t) + + n(A+1, Z, t).n(A+1, Z, t) + n(A–1, Z, t).n(A–1, Z, t) – n(A, Z).n(A, Z, t) + + (A, Z–1).n(A, Z–1, t) × P(A, Z–1) + (A+1,Z–1).n(A+1,Z–1,t) × P1n(A+1,Z–1)+ + (A+2,Z–1).n(A+2, Z–1, t) × P2n(A+2,Z–1) +(A+3,Z–1)n(A+3, Z–1, t) × P3n(A+3,Z–1) +Ff (A, Z) +(A, Z, t) n(t)andn(t)–rates of (n,γ) and (γ,n) –reactions; all fluxes and spectra are time depended =ln2/T1/2 —-decay rate, P - probability of (A, Z) nuclide creation after –-decay of (A,Z-1) nuclide. Branching coefficients of isobaric chains - P1n, P2n, Р3ncorresponds to probabilities of one-, two- and three- delayed neutrons emission in–- decay of the neutron-rich nuclei. Ff (A, Z)describes fission processes — spontaneous and beta-delayed fission. (A, Z) - neutrino capturing processes. 9

  10. Masses-0. Energies - Formulas Т1/2 Qβm (m = 46) Pn~ (Qn)4. 35 A. Sobiczewski PHYSICAL REVIEW C 94, 051302(R) (2016) 10

  11. Masses-1. BETA – DECAY ENERGIES (Nucl. Map General) 11

  12. Masses-1. BETA – DECAY ENERGIES (U) Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, J. Phys. G, 42,075102 (2015)] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] S. Goriely, M. Samyn, and J.M. Pearson (2007) Phys. Rev. C75, 064312. 12

  13. Masses-2. NEUTRON SEPARATION ENERGY (U) Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, J. Phys. G, 42,075102 (2015)] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] 13

  14. Masses-3. α-Decay Energies Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, Eur. Phys. J. A, 53 (2017); 33] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] MMM-Predictions [I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. (2003)]. 14

  15. Masses-3+. α-Decay Energies Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, Eur. Phys. J. A, 53 (2017); 33] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] MMM-Predictions [I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. (2003)]. 15

  16. ENERGIES OF FISSION BARIERS (Np) Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, J. Phys. G, 42,075102 (2015)] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] Efis-1 [S. Goriely, M. Samyn, and J.M. Pearson (2007) Phys. Rev. C75, 064312]. 16

  17. ENERGIES OF FISSION BARIERS (Np) Calculations in “Fayans energy density functional theory –FaDF”. [S.V. Tolokonnikov, I.N. Borzov, M. Kortelainen, Yu.S. Lutostansky, and E. E. Saperstein, J. Phys. G, 42,075102 (2015)] Predictions from the Skyrme EDF HFB-17 code. [S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev.Lett. 102, 152503 (2009)] Efis-1 [S. Goriely, M. Samyn, and J.M. Pearson (2007) Phys. Rev. C75, 064312]. 17

  18. β-Delayed processes in very neutron-rich nuclei Delayed neutron emission -(β, n) ------------------------------------ Multi-neutron β – delayed emission -(β, kn) ------------------------------------ β – delayed fission - (β,f) 7 18

  19. BETA-DELAYED PROCESSES CALCULATIONS 1. Corrections in half-life (1) where , so Т1/2 Eβm (m = 46) (2) 2. Beta-delayed neutrons emission probability (3) I(E) = S(E). f(Z, E)/ I0 , where (4) So for k = 1(one delayed neutron emission): Pn~ E4. 35(5) 3. Beta-delayed fission probability (6) Pβf~ E4  5(7) 19

  20. Beta-Strength Function of Very Neutron-Rich Nuclei • Exp. data: K. Pham, J. Jänecke, D. A. Roberts, et al., Phys. Rev. C 51, 526 (1995) • Calculations: Yu. S. Lutostansky, JETP Lett. 106, 1 (2017) 20

  21. ISOBARIC STATES MICROSCOPIC DESCRIPTION For the GT effective nuclear field, system of equations in the energetic λ-representation has the form[FFST Migdal A. B.]: G -Tselectionrules: Δ j =0;±1 Δ j =+1: j=l+1/2 → j =l–1/2 Δ j =0: j=l±1/2 → j=l±1/2 Δ j = –1: j=l–1/2 → j=l+1/2 j =l–1/2→ j =l–1/2 where nλand ελare, respectively, the occupation numbers and energies of states λ. --------------------------------------------------------------------------------------------- Local nucleon–nucleon δ-interaction Γωin the Landau-Migdal formused: Г = С0 (f0′ + g0′σ1σ2) τ1τ2 δ(r1- r2) where coupling constants of: f0′ –isospin-isospinandg0′ –spin-isospin quasi-particle interaction with L = 0. ------------------------------------------------------------------------------------ Constants f0′and g0′ are the phenomenological parameters. Matrix elementsMGT :where χλν – mathematical deductions G -T values are normalized in FFST: Effective quasiparticle charge is the “quenching” parameter of the theory. “Quenching” effect (Losing of sum rule in beta-strength) is the main in heavy nuclei ~50% 21

  22. BETA-STRENGTH FUNCTION FOR127Xe Dependence from eg 1 - Breaking line – experimental data (1999):M. Palarczyk, et. al. Phys. Rev. 1999. V. 59. P. 500; 2 –Solid red line TFFS calculations with еq= 0.9 ; 3 - Solidblackline– calculations with еq= 0.8:Yu.S. Lutostansky, N.B. Shulgina. Phys. Rev. Lett. 1991. V.67. P.430; 22

  23. BETA-STRENGTH FUNCTION FOR95,97Rb TFFS calculations: I. N. Borzov, Yu. S. Lutostansky, I. V. Panov, S. A. Fayans 23

  24. Half-lives T1/2 (ms) andPn (%) values for Rb isotopes о – experimental data; solid line — TFFS calculations; + —Phenomenological model, dotted line forT1/2 – Gross-theory. 24

  25. BETA-DELAYED NEUTRONS IN NUCLEOSYNTESIS exp Calculated abundances:1–with out (β,n)-effect; 2–with (β,n)-effect; in the relative units (Т=109 К, nn =1024 см-3). Calc.: Lutostansky Yu.S., Panov I.V., et al. Sov. J. Nucl. Phys. 1986. v.44. 25

  26. b-Decay properties T1/2, Pnb-strength properties from theoretical models, e.g. QRPA in comparison with experiments. Pn-Values Half-lives Total Error = 5.54 Total Error = 3.73 QRPA (GT) QRPA (GT) QRPA (GT+ff) QRPA (GT+ff) Total Error = 3.08 (P. Möller et al., PR C67, 055802 (2003)) Total Error = 3.52 26

  27. Half-lives T1/2 I.V. Panov, Yu.S. Lutostansky, F.-K. Thielemann. Beta-decay half-lives for the r-process nuclei. Nuclear Physics A 947 (2016) 1-11 27

  28. Half-lives T1/2 28

  29. Half-lives T1/2 I.V. Panov, Yu.S. Lutostansky, F.-K. Thielemann. Beta-decay half-lives for the r-process nuclei. Nuclear Physics A 947 (2016) 1-11 (P. Möller et al.,PR C67, 055802 (2003)) 29

  30. THE END СПАСИБО = THANK YOU

  31. EGTR – EAR MODEL DESCRIPTION - 1 Mat. model developed for the approximate solutions of equations of the FFST theory by the quasi-classical method. ----------------------------- 2 new parameters: E = EF(n) – EF(p) = Els – average energy of the spin–orbit splitting Wigner’s SU(4) super-symmetry restoration in the heavy nuclei Calculated (circles – ○) and experimental (■) dependencies of the relative energy y(x)=Δ(EGTR-EAR)/Els from the dimensionless value x=E/Els. Blue circles (●) connected by line – calculated values for Sn isotopes. Red line – calculations with eq. Els(N) = 20N–1/3 + 1.25 (MeV). 7

  32. PROCESSES OF NUCLEOSYNTESIS. The tracks of elements synthesis ins (slow)- andr (rapid)- processes.

  33. NUCLEOSYNTHESISOF THE HEAVY NUCLEI NUCLEOSYNTHESIS OF THE HEAVY NUCLEI in s (slow)andr (rapid)- processes  – nuclei withT1/2  1 y. ; ○ – T1/2 < 1 y.; + ‑ predictions.

  34. IMPULCE NUCLEOSYNTHESIS OF THE HEAVY NUCLEI Dynamic r-process NUCLEOSYNTHESIS OF THE HEAVY NUCLEI in s (slow)andr (rapid)- processes – nuclei withT1/2  1 y. ; О – T1/2 < 1 y.; + ‑ predictions. Dynamic r-process track. 5

  35. BETA–– DELAYED FISSION

More Related