slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
关于 回 转仪平 衡 问题 的 研 究 PowerPoint Presentation
Download Presentation
关于 回 转仪平 衡 问题 的 研 究

Loading in 2 Seconds...

play fullscreen
1 / 9

关于 回 转仪平 衡 问题 的 研 究 - PowerPoint PPT Presentation


  • 94 Views
  • Uploaded on

关于 回 转仪平 衡 问题 的 研 究. 03 级物理一班 李超 学号 : PB03203017 2004.4. (a). 很多人在小时候都玩过一种玩具陀螺 , 将其一端架在支点上然后水平地释放它 , 开始它在水平面上摇摆着离去 , 之后就平稳地做均匀的进动 , 人们不禁会脱口问道 : 陀螺为什么不掉下来呢 ? 这就涉及到刚体力学中凭知觉很难 理解的一个问题 : 回转仪的进动 .

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '关于 回 转仪平 衡 问题 的 研 究' - biana


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

关于回转仪平衡问题的研究

03级物理一班 李超

学号:PB03203017

2004.4

slide2

(a)

  • 很多人在小时候都玩过一种玩具陀螺,将其一端架在支点上然后水平地释放它,开始它在水平面上摇摆着离去,之后就平稳地做均匀的进动,人们不禁会脱口问道:陀螺为什么不掉下来呢?
  • 这就涉及到刚体力学中凭知觉很难 理解的一个问题:回转仪的进动.
  • 如果从运动方去求回转仪的普遍运动将是 非常复杂的,而我们这里要研究的运动只是 一种最简单的形式:均匀的进动.(a)是常见 的玩具回转仪,其主要部分是一个旋转的飞 轮,和一个用于固定转轴方向的支架.转轴 一端置于塔状的支架顶上,使轴不受约束地可取各种不同的方位.
slide3

(b)

N

mg

(c)

  • 图(b)是回转仪的略图,三角形表示无约束的支 点,飞轮旋转方向如图所示,再根据受力图(c) 可以看出回转仪竖直方向的合力是N-mg,其中 N是支点所施的竖直力,mg是重力,若N=mg则 质心不会下降.
  • 这个解释是正确的,但不能令人满意.我们提 出了一个错误的问题.我们不应该问回转 仪为什么不掉下来,而应该问它为什么不像 摆那样绕支点摆动.
slide4

L

(d)

  • 事 事实上,如果释放回转仪时它的飞轮没有转动,那么它的行为就严格和摆一样,它竖直地摆动而不是水平地进动,只有当飞轮高速旋转时才做进动,在这种情况下,飞轮巨大的自旋角动量支配着系统的动力学.
  • 几 回转仪全部角动量都依自旋角 动量L而定.L是沿轴取向,其大小为Iω.I是飞轮绕其转轴的转动惯量. 当回转仪绕z轴进动时,在z方向有一个很小的轨道角动量,可是就均匀进动而言,轨道角动量的大小和方向都是常量,并不起动力学的作用,因此我们在这里不考虑它.
slide5

L(t3)

L(t2)

Ω

L(t1)

(e)

z

y

N

l

x

L

(f)

mg

  • L的方向总是沿着转轴,当回转仪进动时,L跟着它一起转动,若进动角速度是Ω,则L的变化率为 =ΩL
  • 的方向和L所掠过的水平圆相切,L变化的原因是由于力矩的作用,可以从(f)中看出,当把支点选作原点时力矩就是由作用在转轴端点的飞轮重量引起的,这个力矩的大小就是M=lmg,方向在y方向上平行于 ,从关系式 =M可求进动角速度Ω. = ΩL及M=lmg,故有Ω= (1). 该式指出, Ω随飞轮旋转减慢而增大, 用玩具回转仪很容易看到这个效应,显然 Ω不可能无限增大,最后均匀进动将要变成猛烈而不稳定的运动.
slide6

z

y

x

  • 以上用角动量定理解释了回转仪在重力作用下的进动的道理,现在我们从另一个更直接的角度来理解这一问题。相对于跟着回转仪一起进动的参考系而言,回转仪的角动量的大小和方向保持不变。进动参考系是匀速转动的参考系,是一非惯性系。在这一非惯性系中,回转仪除受到重力作用以外还受到惯性力的作用。
  • 将回转仪看成匀质圆盘,θ是圆盘上 一质量为dm的质点,在圆盘平面极坐 标系中矢径与极轴的夹角,
slide7

Ω

v

θ

x

ω

z

Fc

r

y

l

x

在进动参考系中写出各物理量的分量式: Ω=Ωk r=xsinθi+lj+xcosθk v=ωxcosθi-ωxsinθk

圆盘上一点dm所受到的惯性离心力为 Fc=-Ω×(Ω×r)dm

=( lxsinθi+ lj)dm

dm惯性离心力在支点产生的力矩

Mfc=r×Fc

=(- xlcosθi+ sinθcosθj)dm

对圆盘上所有的质点积分,设ρ为面密度

ΣMfc= (- xlcosθi+ sinθcosθj)ρxdxdθ

=0

slide8

Ω

v

θ

x

ω

z

y

x

再研究圆盘上一点dm所受到的科里奥利力为

Fcor=-2Ω×vdm

=(2Ωωxcosθj)dm

dm科里奥利力在支点产生的力矩

Mfcor=r×Fcor

=(2Ωω cosθi-2Ωω sinθcosθk)dm

对圆盘上所有的质点积分

ΣMfcor= (2Ωω cosθi

-2Ωω sinθcosθk)ρxdxdθ

= Ωωρπi

再由(1)式推出Ω= = = 代入

于是ΣMfcor=mgli

Fcor

r

l

slide9
ΣMfc=0
  • ΣMfcor=mgli
  • ΣMmg=-mgli

ΣMfc+ΣMfcor+ΣMmg=0

由刚体的平衡原理知回转仪在进动参考系中处于平衡状态

因此不会像摆一样上下摆动。

  • 参考书目:

《力学》杨维纮编著;中国科学技术大学出版社出版;

《力学》郑永令编著;复旦大学出版社出版;