1 / 7

Uniform Distribution

Uniform Distribution. Is a continuous distribution that is evenly (or uniformly) distributed Has a density curve in the shape of a rectangle Probabilities are calculated by finding the area under the curve. Where: a & b are the endpoints of the uniform distribution. 1/.12. 4.92. 4.98. 5.04.

bell
Download Presentation

Uniform Distribution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Uniform Distribution • Is a continuous distribution that is evenly (or uniformly) distributed • Has a density curve in the shape of a rectangle • Probabilities are calculated by finding the area under the curve Where: a & b are the endpoints of the uniform distribution

  2. 1/.12 4.92 4.98 5.04 • The Citrus Sugar Company packs sugar in bags labeled 5 pounds. However, the packaging isn’t perfect and the actual weights are uniformly distributed with a mean of 4.98 pounds and a range of .12 pounds. • Construct the uniform distribution above. What shape does a uniform distribution have? What is the height of this rectangle? How long is thisrectangle?

  3. 1/.12 4.92 4.98 5.04 • What is the probability that a randomly selected bag will weigh more than 4.97 pounds? P(X > 4.97) = What is the length of the shaded region? .07(1/.12) = .5833

  4. 1/.12 4.92 4.98 5.04 • Find the probability that a randomly selected bag weighs between 4.93 and 5.03 pounds. What is the length of the shaded region? P(4.93<X<5.03) = .1(1/.12) = .8333

  5. 1/35 5 40 • The time it takes for students to drive to school is evenly distributed with a minimum of 5 minutes and a range of 35 minutes. • Draw the distribution What is the height of the rectangle? Where should the rectangle end?

  6. 1/35 5 40 b) What is the probability that it takes less than 20 minutes to drive to school? P(X < 20) = (15)(1/35) = .4286

  7. c) What is the mean and standard deviation of this distribution? m = (5 + 40)/2 = 22.5 s2 = (40 - 5)2/12 = 102.083 s = 10.104 (Standard Dev.)

More Related